Wavelet reservoir ID – calibration and application

Michael Glinsky, Jesse Melick (BHP Billiton) and Moshe Strauss (Nuclear Research Center, Israel)

- Is there more information in our seismic data?
 - Another constraint
- Can we find the science behind "attributes"?
 - Forward and inverse model
 - Quantitative
 - AVO analysis vs. amplitude attributes
- Does it work on real life cases?
 - Brunei (Vivaldi and Mozart)
 - GOM (Frampton, Cascade and Chinook)
 - Brazil (BMC-10)

There is multiscale structure in seismic reflectors, can we detect it?

Introduces A (Deridaria INF Sain

lithofacies A (Dendara M7 sand)

scale (log10 m) s 100 Hz 30 Hz 10 Hz 1 smoothed frequency value of o transform

 $\mathbf{0}$

scale (log10 m)

smoothed (30 m) absolute value of continuous wavelet transformation of: d(well log impedance) / d(depth)

Wavelet reservoir ID ... Page 25 June 2003

Multiple reflections can be neglected enabling a linear inverse model

Discrete wavelet transform is a better implementation of inverse model than FT

Start with the well log

scale (log10 m)

20 Hz synthetic shows differences

scale (log10 m)

10 Hz synthetic also shows differences, even though geology is 60 Hz

scale (log10 m)

Linear inversion of 20 Hz synthetic recovers well log spectrum

lithofacies A

depth (m)

lithofacies B

scale (log10 m)

Linear inversion of 10 Hz synthetic still recovers well log spectrum

scale (log10 m)

Linear inversion of real seismic data also recovers well log spectrum

scale (log10 m)

14 well logs were analyzed

- Atlantis-1, Atlantis-2
- MadDog-1, MadDog-2, MadDog-3
- Neptune-1, Neptune-2
- Chinook
- Dendara
- Frampton
- Bass Lite
- Loyal
- Dana Point
- Blackjack

Intervals were classified on well logs according to seismic lithofacies

Principle Facies		Range N:G	Average			Varieties		Upward thickness trend Bed Thickness or
	Curve	SS%	N:G SS %	Bedding		Lithology		Degree of Amalgamation
A	Blocky Sandy	A>70%		thick	A1	Sandy	00000	a increasing b decreasing
					A2	Sandy, with thin shale breaks		c trendless
в	Blocky			thick	B1	Limey		a increasing
	Limey							b decreasing
								c trendless
С	Blocky	70%>C>45%		thick	C1	SS / mud	1000000	a increasing
	Muddy sand				C2	SS / carb	100.001.001.001.000	b decreasing
					C3	Carb / mud		c trendless
D	Serrate	45%>D>25%		medium	D1	SS / mud		a increasing
	Interbedded				D2	SS / carb	╘╗╛╻╧╻┖╻┖┲	b decreasing
	sandy				D3	Carb / mud		c trendless
E	Spikey	25%>E>10%		thin	E1	mud / SS		a increasing
	Heterolithics				E2	carb / SS		b decreasing
					E3	mud / Carb / siltst		c trendless
					E4	SS/mud (70-45% N:G-		
						thin bedded levees)		
F	Smooth		F<10%	thick	F1	mud		a increasing
	Not sandy	<100 API var			F2	silty or sandy mud or thin beds		b decreasing
					F3	silty or carby mud or thin beds	12222	c trendless
G	Variable w ith high gamma, resistivity and				G1	high gamma		
	velocity but low density <i>Pyroclastics</i>				G2	lower gamma-reworked		

bhpbilliton

Wavelet reservoir ID ...Page25 June 2003

Good separation is found of lithofacies groups

Wavelet reservoir ID ...Page25 June 2003

Chinook marl	Dendara M7	
0.65	1.10	average sigma
1.35	0.35	stddev sigma
2.1%	97.7%	P(blocky sand average sigma, stddev sigma)

$$P(A | < \text{scale} >, \sigma_{\text{scale}}) = \frac{P(< \text{scale} >, \sigma_{\text{scale}} | A)}{P(< \text{scale} >, \sigma_{\text{scale}} | A) + P(< \text{scale} >, \sigma_{\text{scale}} | B)}$$
(Bayesian inversion)

More detailed information can be extracted from the wavelet transform

Brunei (Vivaldi prospect, line 6370) has a distinct hyperspectral image

Large scale indicates well developed reservoir (Vivaldi prospect)

∆(A/<A>)/octave @ 28 Hz

Mozart prospect (line 7970) hyperspectral image

Large scale indicates well developed reservoir (Mozart prospect, level D)

∆(A/<A>)/octave @ 28 Hz

seismic 1 6200 0.9 well log 6400 0.8 0.7 6600 0.6 6800 0.5 7000 0.4 7200 0.3 0.2 7400 0.1 7600 300 m 10 m log scale

Cascade normalized wavelet spectrum

Wavelet Reservoir ID for Chinook-3

Chinook-Cascade-Dendara cross section (allin-one) **bhp**billiton

Wavelet reservoir ID ...Page25 June 2003

Stratigraphic slice of wavelet transform

Frampton

Wavelet reservoir ID ...Page25 June 2003

Brazil BMC-10

by wavelet_2.cfg

File Window Layer Tools Preferences Help

_ 🗆 🗙

To browse live intviewer session goto:

- Geologic lithofacies can be quantitatively identified by the wavelet decomposition of the reflection
 - appears to be robust, works on data where standard quantitative interpretation does not work well
- 10 Hz data identifies 60 Hz geologic beds
- One does not need to consider multiple reflections in the inversion
- Discrete wavelet transform (DWT) performs better than Fourier transform (FT) for the inversion (deconvolution)

We would like to acknowledge for their help: Bruce Asher, Gillian Apps, Chris Lerch and Val Lincecum

THE END