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Bayesian Inference

Prior from variogram and nearby data dlk
Likelihood from seismic mismatch
Get the posterior by sampling many t
Normalizing constant can be ignored

PriorLikelihoodPosterior

Normalizing constant
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Truncated Gaussian Likelihood and Posterior

t1 > 0
t2 > 0

t2 < 0

t1 < 0

Posterior Covariance

t  is a Gaussian proxy for h

“Stiff” nonlinear problem
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Handling Pinchouts

A Gaussian model is efficient and simple, but some of
the proxies are negative
For building geomodels set the thicknesses with
negative proxies to zero

                -2             -1             0             1             2             3
                                            t2 layer thickness

Pinching out t2 posterior
distribution
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Truncated Gaussian Markov Chain Monte Carlo
(TG-MCMC)

Define auxiliary variable ui = {0, 1} as indicator of
truncation, 1 for ti > 0

Treats “configurational stiffness”
Plausible truncations by Gibbs sampling
Metropolis transition probability for t includes thickness
and auxiliary terms

Equivalent to sampling from the posterior
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Assumptions and Performance
Layer thicknesses are vertically uncorrelated at each
trace
Lateral correlations are identical for all layers
Toeplitz form for resolution matrix

Efficient Toeplitz solver
Handles layer drop-outs or drop-ins without refactoring
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Sequential TG-MCMC
Generate Path

Krige means and
variances for all layers at

a trace

Propose step Δt from  N(0,Cπ) by
Δt =L . ω  and accept  t ' = t + Δt

by Metropolis criterion

until
convergence

Draw a realization from the
simulated posterior and
add to the existing data

Done

all
traces

Propose ui' given ti 
using Gibbs



2D Examples
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A Simple Two Layer Case
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A Simple Two layer Case
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A Simple Two layer Case
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Bayes reconciles seismic and well/continuity data
Posterior covariance weights each data type appropriately

Simulation retrieves the complete distribution, not just
the most likely combination

Seismic mismatchSpatial mismatch
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Pinching Layer with Tight Sum Constraint
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Prior sum not equal to Constraint

Layer 2

Layer 1

total

Histogram of t
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Scattergram, N=8000
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3D Examples
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3D Problem :Trends

(a) Trend in seismic thickness, H (b) Trend in seismic noise σH;
same H trend as (a)

Incre
as

ing H

Incre
as

ing

Noise

Simulations on a 100 x 100 x 10 cornerpoint grids with
25 conditioning data
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3D Problem :Different Ranges

Short Range Long Range

m2,m20 ==
H

H !
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Performance Summary

305.37Total cost of simulation

Using 2 GHz Pentium-M processor with 1 GB of RAM
Implemented in ANSI C, g77 compiler, using NR & LAPACK routines

299.20 5000 samples, all traces

6.17Overhead for all 104 traces, 10 layers per trace
0.22Toeplitz solver work
5.95Kriging Work

Work in SecondsProcess

5000 samples for 105 unknowns in 5min on a laptop
98% of computation is for generating and evaluating steps

Toeplitz solve is almost free

Fewer samples could be used in practice
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Conclusions

TG-MCMC consistently downscales seismic
inversions and integrates well and variogram
data
Auxiliary variables model truncated layers
TG-MCMC is adequately efficient with
Toeplitz assumptions
Extensions for exact constraints and other
properties seem feasible
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Delivery: Seismic Processing and
Inversion Software

Bayesian preprocessing (Gunning et al 2003, 2004)
Wavelet extraction
Time to depth maps
Well ties

Bayesian seismic inversion code (Gunning et al 2005)
Set of plausible coarse scale reservoir models that honor seismic
Cornerpoint grid formats for reservoir simulation

Bayesian methods help integrate diverse,
uncertain data
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Delivery Seismic Inversion

MCMC Samples from posterior distribution
π(t, Vp, Vs,φ,NG,Fluid Type, …) for each layer

Gunning et al 2006        Traces                               At a trace                           Models



Truncated Gaussian Likelihood and Posterior

Pinching out layer t2 distribution
t2

counts

t1 > 0
t2 > 0

t2 < 0

t1 < 0
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Multi Facies Modeling

Facies with Short Range like Shale

Continuous Facies

Facies with different continuity can be sampled
independently as there is no vertical correlation

need (Hf,σHf) of individual facies

Here two different facies are included
top 5 layers are highly continuous layers (large range)
bottom 5 layers have short range
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Sampling when Seismic Constraint is
Tight

Only K-1 degrees of freedom are available as

Construct a new K-1 dimensional orthogonal
basis using Gram-Schmidt or SVD
Sample on this new basis t'
Need to build (unique) transformation matrix U
mapping to original  coordinates t =U t'

Ht
K

i i
=! =1
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Ongoing Research

Several Distinct Facies inclusion in each seismic
loop
Sampling on the constraint hyperplane
Implementation of Block Methods to address the
concerns with sequential methods
Constraint on porosities and other nonlinear
properties
Selecting Realizations by upscaling the properties,
simulating, and principle component analysis
(PCA)
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Markov chain Monte Carlo (MCMC)

Samples from posterior using Markov and Monte Carlo properties

A Markov Chain is a stochastic process that generates random
variables { X1, X2, …, Xt } where the distribution

i.e. the distribution of the next random variable depends only on
the current random variable

These samples can be used to estimate summaries of the
posterior, π, e.g. its mean, variance.

)|(),,,|( 1121 !!
=

tttt
XXPXXXXP …
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Data Augmentation : Handles bends in the posterior

Reversible MCMC hopping scheme that adjust to the
proposals to the shape of local posterior
Define auxiliary variable ui={0,1} as indicators of the  layer
occurrence
Sampling in indicator space is done by Gibbs sampling
This handles pinchouts; details of t are handled in a
Metropolis step
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Metropolis for t

It is possible to construct a Markov Chain that has the
posterior as its stationary distribution
In the current step, the value of the parameters is Xt.
Propose a new set of parameters, Y in a symmetric
manner.
Calculate the prior and likelihood functions for the old and
new parameter values.  Set the parameter values in the
next step of the chain, Xt+1 to Y with probability α,
otherwise set to Xt
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Convergence of Mean and Variance

Should converge to target distribution in as few
steps as possible
Hopping

large steps    →   acceptance rate low
small steps  →  don’t explore posterior
Scaled posterior →

!!
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