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Introduction

This report presents Let It Wave’s matching pursuit tool, adapted to seismic data analysis. This
is an intermediate report, that details the progress made sofar.

Matching pursuit is a spectral decomposition method, whichprovides a high-resolution and
more flexibility than other traditional methods like the Continuous Wavelet Transform (CWT)
or the Short-Time Fourier Transform (STFT). The principle is to represent a signal with a cer-
tain number of relevant atoms, waveforms characterized by their position in time, scale and
modulation frequency. Our goal is to build such a decomposition adapted to seismic data and
analysis, such that it could be understood in a global approach, and extract relevant geophysical
attributes

We will first present the theory of matching pursuit in further detail, and that of the Wigner-
Ville transform, a classic display commonly associated. Then we will go in further to explain
the changes and adjustments made to fit this technique to the specific case of seismic data, and
will conclude with our results so far displayed with two different methods to try and emphasize
the information provided by the matching pursuit.
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1 The matching pursuit spectral decomposition

Matching pursuit (later referred to as MP) is an algorithm that was first introduced by Stephane
Mallat (see [2]). It provides a spectral decomposition of a signal in a very flexible and efficient
manner. The signal is thus represented by a series of ’atoms’and associated coefficients, which
are Gabor functions, and their weights. Let us present this decomposition in further details.

1.1 Gabor transform

The basis for the matching pursuit algorithm is what is commonly referred to as the Gabor
transform. Its principle is similar to a wavelet transform,only with one more degree of liberty.
Indeed, the Gabor transform is the collection of coefficients resulting from inner products of a
signal and a family of waveforms. However, when the CWT family is generated from a mother
wavelet, dilated and translated for the wavelet transform,in this case the family is generated
from a mother waveform, dilated, translatedandmodulated.

The initial waveform chosen is usually a suitably normalized Gaussian that will be called
g(t).

g(t) =
1√
2

exp[−2πt2] (1)

An atomg(u,s,ξ) is now generated from this function and can be identified by three parame-
ters:

• positionu

• scales or varianceσ = 2s

• modulation frequencyξ

From now on this triplet will be calledγ = (u, s, ξ) It is defined as,

gγ(t) = Kγ exp

[

−2π

(

t − u

2s

)2
]

e−iξt (2)

Various examples of atoms, including the unmodulated Gaborfunctions are represented in
figure 1. The main difference with the CWT to notice, is how scale and frequency can be
independently chosen to characterize an atom. Indeed, the figure displays two atoms of same
scale but different frequencies (second and third atoms), likewise there are two atoms modulated
at the same frequency but with different scales (third and fourth atoms). Also, the second atom
from the left has a small scale and a low frequency, while the fourth atom has a large scale and
high frequency, both configurations that don’t exit in a classic continuous wavelet transform.
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Figure 1: Various Gabor atoms. From left to right: the Gabor function, scale=0, frequency=0;
scale=2 frequency=8ωN

30
; scale=2 frequency=ωN ; scale=4 frequency=ωN , where ωN is the

Nyquist frequency .

Note that in this case the family of waveforms will be redundant for the purpose of the
pursuit. Nevertheless, a reconstruction of signalf from the transform can be written as:

f =
+∞
∑

n=0

〈Rnf, gγn
〉gγn

(3)

Of course, in the cases of matching pursuit and continuous wavelet transform alike, atoms
are restricted by the Heisenberg inequality in terms of shape and spectral support(see [1]).
Heisenberg’s inequality states that the variance in timeσ2

t and the variance in frequencyσ2
ω

of a functionf ∈ L(R2) verify:

σ2
t σ

2
ω ≥ 1

4

it means that a function can’t be both perfectly localized intime and frequency. This is
better represented in figure 2. On the right is the tessellation of the spectral domain by the CWT
atoms (as used by BHP-Billiton), and on the left two boxes showing potential atoms’ support
for the matching pursuit.

Note. It is essential to keep in mind that, though similar in approach, the CWT and the Gabor
transform lead to very different representations and have to be thought of as two separate con-
cepts. In particular, it is important to make the distinction between scale and frequency during
the analysis of a Gabor transform or a matching pursuit.

1.2 Pursuit mechanism

The matching pursuit goes farther than the Gabor transform.Its objective is to select atoms
that best describe the signal among all possible waveforms.The process is iterative and lead to
a very efficient representation of the signal. Starting fromthe Gabor transform, the principle
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Figure 2: Those figures are intended to show the tessellationof the time-frequency plane by
atoms. On the left, is the representation of two atoms, constrained by the Heisenberg inequality,
the width of an atom determines it height. In the case of the Gabor transform, atoms can be
positioned wherever in this plane, as long as respect this inequality. However, in the case of
the CWT, atoms are positioned in a q-determined fashion as can be seen on the right figure. Of
course, Gabor transform atoms can assume all the positions of that of the CWT and more.

is at each step to select the atom that best matches the signal, then subtract it from the signal,
and start again. This requires to know the Gabor transform coefficients of each modified signal.
Because computing the remainder, then its Gabor transform,at each step would be very costly,
the trick is to compute the Gabor transform only once, then deduce the new coefficients for each
step from the previous one, we will refer to this step as coefficients updating.

The pursuit can be summed up in a few step. Given the Gabor transform defined by equation
3. Definegγ0

, such that:

〈f, gγ0
〉 = max

k∈N

〈f, gγk
〉

Then, ifR0f is the remainder of a signal minus its most important atom:

R0f = f − 〈f, gγ0
〉gγ0

(4)

From there, the process has to be repeated on the remainder: take its transform, then find
the maximum and subtract, and so on, recursively. However, computing once again a Gabor
transform is out of question. To avoid the computational cost, just note that from equation 4,
we can derive:

〈R0f, gγ〉 = 〈f, gγ〉 − 〈f, gγ0
〉〈gγ0

, gγ〉 (5)

and recursively, we obtain the equation for updating inner products:

〈Rn+1f, gγ〉 = 〈Rnf, gγ〉 − 〈Rnf, gγn
〉〈gγn

, gγ〉 (6)
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Note. About real and complex atoms:

So far the atoms used in this process were all complex valued.Of course, in terms of display
and analysis, this is neither practical, nor realistic. Theatoms we are working with eventually
are real atoms obtained from the usual combination of a complex atom and its complex conju-
gate. Letgγ,φ be the real atom, then:

gγ,φ = Kγ,φ(e
iφgγ + e−iφg∗

γ) (7)

(Note thatg∗

(u,s,ξ) = g(u,s,−ξ))

Even though most intermediate computations are made using complex atoms, the resulting
process is kept in the real domain, by subtracting a real atomfrom the signal at each step. Hence
the true updating equation is:

〈Rn+1f, gγ〉 = 〈Rnf, gγ〉 − 〈Rnf, gγn,φ〉〈gγn,φ, gγ〉 (8)

1.3 Matching pursuit lexicon

Matching pursuit comes with a small lexicon very similar to that of coding. This is just a small
summary to clarify the terms employed in this report and our softwares.

• Atom : Any waveform obtained from the original Gaussian through translation, dilatation
and modulation, and following equation 2.

• Dictionary : The collection of all atoms considered in the pursuit, fromwhich the
matched atoms can be selected.

• Book : This is the output of the matching pursuit, it is the collection of selected atoms
paired with corresponding coefficient.

1.4 Wigner-Ville transform

In praxis, the output of the matching pursuit is a collectionof atoms defined by three parameters,
position, scale and frequency. This means that a basic approach would use a three-dimensional
object to describe the decomposition of a one-dimensional signal, like a single trace. We are
aiming for ( and have designed) a same-D representation, however, a common solution was
devised by J.Ville in [3], following the work of E.P. Wigner ([4]), with the Wigner-Ville trans-
form. It consists in representing the addition of all atoms Fourier transform. The Wigner-Ville
distribution of a functionf is defined as follows:

WV f(u, ξ) =

∫ +∞

−∞

f
(

u +
τ

2

)

f ∗

(

u − τ

2

)

e−iτξdτ

=
1

2π

∫ +∞

−∞

f̂

(

ξ +
t

2

)

f̂ ∗

(

ξ − t

2

)

e−itudt (9)

One advantage of this distribution is that it doesn’t cause spreading of atoms support, i.e. the
time support of a Dirac function is still a Dirac function. Inour particular case, the distribution
becomes:

12



WV f [n, k] =

+∞
∑

m=0

|〈Rmf, gγm,φ〉|2WV gγ[n, k] (10)

whereWV gγ[n, k] is a bi-dimensional Gaussian centered in(um, ξm) and dilated by2sm

in time and2−sm in frequency. Figure 3 shows the Wigner-Ville representation of a matching
pursuit completed on the signal shown in figure 1.

Figure 3: A simple example of the Wigner-Ville representation of a matching pursuit on the
signal displayed in figure 1. All atoms were chosen to have thesame energy, hence their similar
colors. The horizontal axis is the frequency axis, the vertical one represent time. The shape
of atoms is determined by their scale, notice how the first atom, scale 0 is very elongated in
the horizontal direction (like a Dirac) and how the last atom, scale 4 is elongated in the other
direction.

2 Scale-by-scale matching pursuit

The original matching pursuit algorithm wasn’t particularly intended for seismic data analysis.
Our mains concerns here were the fact that we needed to ensurespatial continuity among traces
for coherent interpretation and that we needed to separate the influence of the measuring wavelet
from the real signal information since our data are convolved. We have hence brought some
changes to the traditional algorithms and developed some other tools to suit our needs.
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2.1 Limits of regular matching pursuit

As mentioned previously, spatial continuity is a prerequisite to any coherent analysis on seismic
data.

Matching pursuit picks out atoms best suited to describe structures. Hence the choice of an
atom affects the rest of the process, creating a new residualsignal, basis for the following steps.
Also, if slightly altered, a structure may be, for example, best fitted by a large atom instead of
a series of smaller ones. Because of all this, the result of the decomposition may be different
from one trace to the other. Of course, it won’t be altogetherdifferent, and the discrepancies
usually concerns larger scale modulated atoms which are harder to fit. To alleviate this problem,
one solution consists in doing ’scale-by-scale’ matching pursuit. The principle is to compute
the pursuit several time on sub-dictionaries, each of them containing atoms corresponding to
one fixed scale. Thus, we can ensure to control atoms at each scale, which provides lateral
continuity from one trace to the other.

Figure 4 shows the differences between a regular matching pursuit and a scale-by-scale
treatment, on Scarborough’s reservoir, at a fixed frequency. Imposing a scale by scale analysis,
makes sure that there is an even number of atoms at each scale.

(a) Traditional (b) Scale-by-scale

Figure 4: Figure on the left shows the Wigner-Ville of a matching pursuit made on Scarbor-
ough’s reservoir (at fixed zero frequency). The computationis made on scale 0 to 5 and with
50 atoms per trace. On the right, the same Wigner-Ville on thematching pursuit scale-by-scale
of the same data set. Atoms are still between scale 0 to 5, and with 20 atoms per trace and per
scale.
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2.2 Algorithm

This is the algorithm implemented for the scale-by-scale matching pursuit inliwMPS only. It
is a scale-by-scale algorithm and represents only the skeleton of our process.

For each trace and each scale:

1. Compute the Gabor transform (over the appropriate dictionary)
2. Find the max over all coefficient and the corresponding atom gγ0

3. Addgγ0
to the book

4. From(n) to (n + 1)

(a) Update the dictionary
(b) Update coefficients
(c) Determine the new max over all coefficients, and corresponding atomgγn

(d) Addgγn
to the book

(e) Test the energy corresponding to the word, if it is less than the threshold, stop, other-
wise start step(4) again

2.3 Examples and displays

Here our some examples of what this software can do. Following are representations of decom-
positions of reflectivity. Reflectivities are the best signal to appraise the matching pursuit since
they are the only signal free for the interference of the measuring wavelet.

The matching pursuit is a technique that provides a wealth ofinformation on the signal
with a decomposition on position, scale and frequency. The traditional display method is the
Wigner-Ville display as mentioned earlier. However, this display is hardly comparable to that of
a CWT. Hence, LIW has designed a simplified display, showing the spread of atoms according
to their position and scale, the later referred to as, scale-by-scale display. It is computed with
liwSScaleDisplay. Figure 5 shows the matching pursuit of a trace compared to its CWT
decomposition.

For a thorough analysis, the Wigner-Ville display is however more recommended. Below in
figure 6 examples of what can be done using BHPViewer to take fully advantage of it.

BothliwSScaleDisplay andliwWVS include options to filter out data along scale and
frequency.

3 Normalization

Common seismic signals result from geological measures andhence have been convolved by
the measuring wavelet. This convolution ’taints’ the result shown by any spectral decomposition
if no additional processing is performed. It is essential tobe able to recover the original infor-
mation present in the signal and to discriminate it from information of the measuring wavelet.
Two softwares have been developed in order to represent the matching pursuit as it would be
before convolution.

15



(a) Matching Pursuit (b) Seismic trace (c) CWT

Figure 5: Comparison between a matching pursuit and a CWT. Left the matching pursuit de-
composition of trace from Scarborough in a time vs scale display, center, said trace and right
the CWT after smoothing.

3.1 Main ideas

The problem of deconvolution on seismic data is a very delicate, non-trivial one. First of all,
it is extremely difficult to extract the measuring wavelet from data or plan its behavior. That
means that it is impossible to just ’inverse’ the filter. Withnext to no reliable information on
the wavelet, we need to perform that is generally referred toas a ’blind deconvolution’.

The principle of such a method, is to try to find a way to gather amodel of the filter directly
from the observed data, than to try and inverse it. In order toexplain this procedure, let us go
back to classic representation of a matching pursuit.

The matching pursuit decomposes a seismic signalS as a sum of Gabor atomsgγ adaptively
chosen :

S =
∑

γ

cγ gγ .

Its energetic representation is obtained by summing the energy of the different atoms :

E(S) =
∑

γ

|cγ|2 E(gγ) .

whereE(g) is either the Wigner-Ville energy spectrum of the atom of itsscale by scale spectrum
representation.

The seismic signalS is the convolution of the reflectivityR with a seismic waveletΨ (we
will for now overlook any additive noise) and thus

R ⋆ Ψ = S =
∑

γ

cγ gγ .
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(a) Frequency=0

(b) Frequency=ωN

6

(c) Frequency=ωN

Figure 6: Three slices of a Wigner-Ville visualized with BHPViewer at three different frequen-
cies,0,ωN

6
, ωN , whereωN is once the again the Nyquist frequency. The original dataset is once

again a close-up on Scarborough’s reservoir, the exact sameone that was displayed in figure 4
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If the waveletΨ was known, the reflectivity could be obtained from the seismic trace through
a simple convolution withΨ−1 :

R = R ⋆ Ψ ⋆ Ψ−1 = S ⋆ Ψ−1 =
∑

γ

cγ gγ ⋆ Ψ−1 .

The energetic representation ofR would thus be approximated by :

E(R) =
∑

γ

|cγ|2 E(gγ ⋆ Ψ−1) .

As stated before, this is an ideal representation, one it is very difficult to have access to, but
one that can be approximated.

To stabilize the display with respect to the wavelet, we choose to approximateE(gγ ⋆ Ψ−1)
by λ2

γE(gγ). This is equivalent to saying that the Gabor atoms are approximate eigenfunctions
of the convolution operator. This is very similar to the underlying technique used in BHP’s
renormalization for the CWT.

The main issue lies in the choice of the parametersλγ : only the seismic traceS is observed
and the waveletΨ is unknown. Fortunately, the classical hypothesis that thereflectivity R

follows the white noise model gives a way to estimate thisλγ . This hypothesis can be reinforced
by considering a spatial average of the reflectivity insteadof the reflectivity.

Indeed for anyγ, a local average in time yields over thegγ′ that are translate ofgγ

E(|〈S, gγ′〉|2) = E(|〈R ⋆ Ψ, gγ′〉|2) = E(|〈R, gγ′ ⋆ Ψ̃〉|2)

with Ψ̃ the conjugate reverse ofΨ.

Note now that ifR is a white noise, this quantity is a good estimate of‖gγ ⋆ Ψ‖2
2 up to a

constant factor. As the power spectrum of a white noise is constant, this is indeed the variance
of 〈R, gγ ⋆ Ψ〉 which is the same as〈R, gγ ⋆ Ψ̃〉.

Assumegγ⋆Ψ−1 = λγgγ, which is true for any eigenvalue ofΨ and supposed approximately
true forgγ, thengγ ⋆ Ψ = 1

λγ
gγ,

‖gγ ⋆ Ψ‖2 =
1

λ2
γ

‖gγ‖2 ,

and as thegγ are normalized :

‖gγ ⋆ Ψ‖2 =
1

λ2
γ

.

E(|〈S, gγ′〉|2) is thus a good candidate estimate for1
λ2

γ
.

The proposed renormalization is then obtained by the following formula

E(R) =
∑

γ

|cγ|2
E(|〈S̃, gγ′〉|2)

E(gγ)

whereS̃ is a spatial average of the seismic traces andE is a local average over the Gabor atoms
that are translates ofgγ.

One should note that using a local time average instead of a global time average makes the
whole process robust to a deformation of the seismic waveletalong the trace.
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3.2 Implementation : liwmpcoeffs and liwmpnorm

The normalization is implemented in two steps. First, coefficientsE(|〈S̃, gγ′〉|2) are computed
over a dataset, then each trace is normalized using those coefficients. Because coefficients only
need to be computed once over a dataset and not for each trace,the two processes were separated
into two softwares for more efficiency.

Let us defineαγ as the correction coefficients for each atomgγ. Theαγ coefficients are com-
puted byliwmpcoeffs over a whole block of traces, then, it is a simple matter performed by
liwmpnorm to normalize the book, the new coefficientsc′γ are obtained simply by multiplying
each coefficient:

c′γ = αγ ∗ cγ

If there were no additional noise, the correction coefficients would be:

αγ =
1

√

E(|〈S̃, gγ′〉|2)

However, since it is a rather unreasonable assumption, we can estimate the noise level over
the signal and represent by its varianceσ2. The corrections coefficients then become:

αγ =

√

E(|〈S̃, gγ′〉|2) − σ2

E(|〈S̃, gγ′〉|2)

Finally, because the previous expression is not always defined, we will introduce parameter
ǫ and rewrite the coefficients in their final form as follows.

αγ = min





√

max(E(|〈S̃, gγ′〉|2) − σ2, 10−6)

E(|〈S̃, gγ′〉|2)
,
1

ǫ





3.3 Pre-normalization

The normalization is performed on the book of atoms and not the signal itself. An important ad-
vantage of this method is that while there is always a risk of amplifying noise while performing
a deconvolution, the risk is minimum here as the matching pursuit performs inherent denoising.
In other words, the book of atoms is devoid of noise, hence normalization should induce no
noisy phenomenon.

However, ’post-normalization’ has some drawbacks. After convolution with the wavelet,
atoms are likely to be slightly shifted if not always in position, at least in frequency (scale is
relatively stable). The post-renormalization can put emphasis on some atoms or decrease the
importance of others, but it won’t change their coordinates. It would be really good to be able
to normalize the convoluted signal directly to reveal the ’real’ atoms. However, given the non
negligible presence of noise in seismic signal, this strategy causes great difficulty as the dreaded
phenomenon of noise amplification occurs.

The solution is to pre-normalize, but ’not too much’. One wayto realize that is to use theǫ
parameter defined in section 3.2. This parameter was introduced to avoid divide-by-zero cases,
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(a) Before normalization (b) After normalization

Figure 7: On the left, the Wigner-Ville representation of the matching pursuit decomposition of
a seismic trace taken from Neptune. On the right, that of the normalized book of atoms.

but it can be used to moderate amplification through normalization. Indeed, only atoms associ-
ated withαγ coefficients greater than1 are amplified. Obviously this is approximately realized
whenmax(E(|〈S̃, gγ′〉|2), ǫ) < 1, thus one way to ensure that there will be no amplification is
to setǫ to 0. This causes the pre-normalization process to eliminate some atoms by reducing
their weight, and will not amplify noise.

In praxis, it is not necessary to setǫ to 0, values like0.1 or 0.01 do a reasonable job and
generally do not cause unwanted noise amplification. However, since this is performing a ’full’
normalization it is best to combine it with a pass of post normalization, applied with a much
smaller value ofǫ.

4 Inverse transform

The Gabor transform can be inverted, we can reconstruct the signal from the book of atoms.
This provides many interesting applications. The most simple being de-noising, by selecting
only relevant atoms the matching pursuit gets rid of the noise contained in the signal, the re-
constructed signal will hence be free of noise. Others applications come from filtering. It is
possible to process or filter the book atoms before reconstructing for analysis purpose. Some
basic functions are implemented in our software since it is possible to filter atoms according to
their scale or frequency.
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4.1 Reconstruction

Let us go back on the general equation of the regular matchingpursuit.

f =

+∞
∑

n=0

〈Rnf, gγn
〉gγn

(11)

After N iterations of the algorithm, we can partially reconstruct the f̃ .

f̃ =

N
∑

n=0

〈Rnf, gγn
〉gγn

In the particular case of scale-by-scale matching pursuit,we can derive a very similar re-
construction formula. Indeed this reconstruction holds true for each scale individually, thus
reconstructing the signal from the whole book, is a matter ofaveraging the reconstructions
from each scale.

f̃ =
1

S

S−1
∑

s=0

(

Ns
∑

n=0

〈Rnf, gγn
〉gγn

)

(12)

whereS is the number of scales.

4.2 Examples

Let’s start with the reconstruction of a single trace, extracted form Pyrenees. Figure 8 shows the
type of reconstruction that can be obtained by performing a matching pursuit using10, 50, 100
and250 atoms per scale. A very similar comparison could be made using smaller and smaller
thresholds.

Figure 9 shows the reconstruction of a whole slice of dataset. This was obtained with a
scale-by-scale matching pursuit performed on five scales and counting 500 iterations for traces
of 751 points. This is a very high number of iterations to consider, and only used here for
demonstration purpose. A smaller number of iterations would provide almost the same result.
Still, it is interesting to note, that although there are differences, the reconstruction is almost
perfect and not suffering much form lateral discontinuity problems.

5 Workflow

5.1 Block diagram

Figure 10 shows a block diagram of possibilities in using allsoftwares. The choice of workflow
really just depends on the type of data that is processed, whether it might be simple reflectivities
or real seismic traces.

Note that in case the aim is to obtain a perfect reconstruction, the book of atoms should
never be normalized. However, the reconstruction of a normalized dataset can offer insights on
what ’should be’.
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(a) Original (b) 10 iterations (c) 50 iterations (d) 100 iterations (e) 250 iterations

Figure 8: On the far left, the original wigb depiction of the signal. Remaining figures show the
reconstruction of this signal after a matching pursuit decomposition using various numbers of
iterations. Figure b and c already show how it is possible to extract relevant information from
the signal with few iterations, going to much higher numbers, the reconstruction ends up near
perfect.

(a) Original (b) Reconstruction

Figure 9: On the left the original dataset, on the right its reconstruction, minor differences can
be seen especially in the upper right corner of the image.
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if pre-norm

yes

no

liwmpcoeffs

(coeff soft)

set of seismic traces
+ coeff inner products

set of normalization coefficients

liwMPS

seismic dataset
+scale-by-scale inner products

book(s) in su file

if norm

yes

no

liwmpcoeffs

(coeff hard)

set of seismic traces
+ coefficients inner products

set of normalization coefficients

book(s)

normalized book(s)

liwmpnorm

liwWVSliwSScaleDisplay liwIMPS

Scale-by-scale display Wigner-Ville display Reconstructed dataset

Figure 10: Block diagram of a typical workflow.
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5.2 Examples of script

Following are two examples of scripts used on seismic data, whether it would be reflectivities
or noisy, convolved, seismic data. The examples were taken from Pyrenees. We will first show
how to proceed on the reflectivity.The results are displayedin figure 11.

liwMPS <rfc_Crosby-2_full_little.su scale_max=5 nb_iter=500
product_dir=/storage/lannes/Seismic >rfc_bk.su

liwWVS <rfc_bk.su >rfc_WV.su
liwSScaleDisplay <rfc_bk.su >rfc_WV.su

(a) WV (b) SD

Figure 11: The results of the matching pursuit, let the Wigner-Ville representation, right the
scale-by-scale display.

On to the ’real’ case. This includes pre-normalization and renormalization. Figure 12 show
the results with and without normalization.

liwmpcoeffs <mig16_pst_full_il1434.su scale_max=5 window=100
product_dir=/storage/lannes/Seismic enhance_level=0.01 >coeffs_soft.su

liwMPS <seismic_well_Crosby-2_full_little.su scale_max=5 nb_iter=100
product_dir=/storage/lannes/Seismic norm=1 input_coeffs=coeffs_soft.su
>seismic_bk.su

liwmpcoeffs <mig16_pst_full_il1434.su scale_max=5 window=100
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product_dir=/storage/lannes/Seismic enhance_level=0.000001
>coeffs_hard.su

liwmpnorm <seismic_bk.su input_coeffs=coeffs_hard.su >seismic_norm.su

liwWVS <seismic_norm.su >norm_WV.su
liwSScaleDisplay <seismic_norm.su >norm_WV.su

(a) Before normalization (b) After normalization

Figure 12: On the left, the Wigner-Ville representation of the matching pursuit decomposition
of the seismic trace. On the right, that of the normalized book of atoms. When comparing with
the previous figure, it is obvious that the high-frequency content has mostly disappear, but some
structures are partially recreated.
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A liwMPS

[lannes@liw67 bhp]$ liwMPS

LIWMPS -

liwMPS <stdin scale_max= nb_iter= compute= write= >stdout

stdin Input, dataset to analyse
stdout Input, book of atoms

Required parameters:

scale_max= Input, maximum logarithmic scale of the decomposition
Scales go from 0 to sclae_max, or 3*dt to
(2^(scale_max+1))*dt

nb_iter= Input, maximum number of atoms to compute per trace
product_dir= Input, name of the directory containing atoms

inner products

Optional parameter:

compute=0 =1 to re-compute inner products between atoms
write=0 =1 to write the table of inner product in a RAW file
threshold=0 proportional threshold on atoms’ energy

Algorithm stops either when the energy falls below
the threshold*singal_energy or when nb_iter is reached.
e.g. 0.01, means the algorithms stops when the
energy of the residual signal represent 1% of
the energy of the original signal or after
nb_iter iterations, whichever comes first

norm=0 =1 to pre-normalize
grid=1 factor of grid refinement, 1 is minimum,

2 is twice finer and so on.
default is 1, corresponding to a 1/2 overlap
between atoms

input_coeffs filename containing coefficients needed for
normalization

verbose=0 =1 to allow advisory message
=2 to display details about every atoms

Header words:

ns 5*nb_iter*(scale_max+1)
mark scale_max
cdpt length of the original trace

For each atom, the output book of a trace stores in the following
order:
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- its scale, as an integer between 0 and scale_max
included
- its position, as an integer corresponding to the
sample number
- its frequency as an integer corresponding to its
index representation
- its coefficient as two floats, the real and
imaginary part

Example

liwMPS <nept_depth_reftrace_long.su scale_max=5 nb_iter=100
threshold=0.01 product_dir=/storage/lannes/Seismic norm=1
input_coeffs=coeffs_soft.su >nept_pre_bk.su

Example of command line, to perform matching pursuit with pre-normalization.

liwMPS <nept_depth_reftrace_long.su scale_max=5 nb_iter=100
threshold=0.01 product_dir=/storage/lannes/Seismic norm=1
input_coeffs=coeffs_soft.su >nept_pre_bk.su

B liwmpcoeffs

[lannes@liw67 bhp]$ liwmpcoeffs

LIWMPCOEFFS -

liwmpcoeffs <stdin scale_max= window= product_dir= >coeffs.su

Required parameters:

scale_max Input, maximum scale considered
product_dir Input, directory containing atoms inner products .

Optional parameter:

window=0 Size of the time-averaging window
Default at 0 automatically sets the length of the
windows to be the length of the signal, hence assuming
the wavelet is time-invariant over the length
of the signal.

verbose=0 Default 0 is no messages .
=1 is estimated energy of the signal
=2 is general information (including estimated noise)

compute=0 =1 to compute inner products
write=0 =1 to write the table of inner product in a RAW file
noise_level impose noise level in dB, otherwise compute

if E is an estimate of the signal’s energy than the
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noise level in dB is written as
N_dB = 10 log( Sigma^2 / E)

enhance_level coefficient to limit amplification,
1 is no amplification.
0.1 or 0.01 are recommended for pre-normalization
0.000001 for full normalization
default is 0.001
correction coefficients belong to
[enhance_level, 1/enhance_level]

corr_min imposed minimum on correction coefficients
default is equal to enhance_level
correction coefficients belong to
[corr_min, 1/enhance_level]

Note that the energy of the signal is estimated and can be output
through verbose

About header words:

ep logarithmic scale of atoms
cdp frequency index of atoms

Examples

liwmpcoeffs <nept_depth_refline_long.su scale_max=5 window=100
product_dir=/storage/lannes/Seismic enhance_level=0.1
>coeffs_soft.su

liwmpcoeffs <nept_depth_refline_long.su scale_max=5 window=100
product_dir=/storage/lannes/Seismic enhance_level=0.000001
>coeffs_hard.su

Two examples of command line, depending on whether the coefficients are to be used for
pre-normalization or for the regular normalization.

liwmpcoeffs <nept_depth_refline_long.su scale_max=5 window=100
product_dir=/storage/lannes/Seismic enhance_level=0.1
>coeffs_soft.su

liwmpcoeffs <nept_depth_refline_long.su scale_max=5 window=100
product_dir=/storage/lannes/Seismic enhance_level=0.000001
>coeffs_hard.su

C liwmpnorm

[lannes@liw67 bhp]$ liwmpnorm

LIWMPNORM -
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liwmpnorm <stdin input_coeffs= >stdout

Required parameters:

input_coeffs= Input, sufile containing correction coeffcients

Optional parameter:

verbose=0 =1 to allow advisory message .
window=ns length of the averaging window, defaults

is whole length of the signal
a reasonable choice is to pick same value
as used for liwmpcoeffs
(a sum along the time axis using a sliding window
is performed to ensure all scales have the same
total energy, this window represents the number of
samples to consider)

Example

liwmpnorm <nept_pre_bk.su window=100 input_coeffs=coeffs_hard.su
>nept_norm.su

Example:

liwmpnorm <nept_pre_bk.su input_coeffs=coeffs_hard.su >nept_norm.su

D liwWVS

[lannes@liw67 bhp]$ liwWVS

LIWWVS -

liwWVS <stdin >stdout

stdin Input, su file containing book of atoms
stdout Output, su file containing display

Optional parameter:

scale_min=0 Displays only atoms of scale above scale_min
scale_max=100 Displays only atoms of scale under scale_max

Scales are logarithmic and start from 0.
Scale n corresponds to n atom of size ( 2^(n+1)+1 )*dt

freq_min=0 Displays only atoms of frequency above freq_min
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freq_max=3.14 Displays only atoms of frequency under freq_max
Frequencies go from 0 to pi=3.14 where pi is 1/dt
Frequencies are k*pi/N, k from 0 to N where N is
max number of frequencies
and corresponds to k/(N*dt) is Hertz

nb_freq Number of frequencies considered for the display
(sampling of the display)

velocity=2500 Velocity used to compute bed thickness from scale
verbose=0 =1 to allow advisory message

Header words:

f1 Frequencies in Hz
f2 Wavelength in m
cdpt Frequencies’ indices k as in k*pi/N

Example:

liwWVS <nept_norm.su >nept_WV.su

Example:

liwWVS <nept_norm.su | suximage perc=99

E liwSScaleDisplay

[lannes@liw67 Neptune]$ liwSScaleDisplay

LIWSSCALEDISPLAY -

liwSScaleDisplay <stdin >stdout

stdin Input, su file containing book of atoms
stdout Output, su file containing display

Optional parameter:

scale_min=0 Displays only atoms of scale above scale_min
scale_max=100 Displays only atoms of scale under scale_max

Scales are logarithmic and start from 0.
Scale n corresponds to n atom of size ( 2^(n+1)+1 )*dt

freq_min=0 Displays only atoms of frequency above freq_min
freq_max=3.14 Displays only atoms of frequency under freq_max

Frequencies go from 0 to pi=3.14 where pi is 1/dt
Frequencies are k*pi/N, k from 0 to N where N is
max number of frequencies
and corresponds to k/(N*dt) is Hertz
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velocity=2500 Velocity used to compute bed thickness from scale
verbose=0 =1 to allow advisory message

Header words:

f2 Bed thickness in m
cdpt Log scale (+1)

Example:

liwSScaleDisplay <nept_norm.su >nept_SD.su .

Example:

liwSScaleDisplay <nept_norm.su | suximage perc=99

F liwIMPS

[lannes@liw67 Neptune]$ liwIMPS

LIWIMPS -

liwIMPS <stdin >stdout

Optional parameter:

verbose=0 =1 to allow advisory message
scale_min=0 Displays only atoms of scale above scale_min
scale_max=100 Displays only atoms of scale under scale_max

Scales are logarithmic and start from 0.
Scale n corresponds to n atom of size
( 2^(n+1)+1 )*dt

freq_min=0 Displays only atoms of frequency above freq_min
freq_max=3.14 Displays only atoms of frequency under freq_max

Frequencies go from 0 to pi=3.14 where pi is 1/dt
Frequencies are k*pi/N, k from 0 to N where N is
max number of frequencies
and corresponds to k/(N*dt) is Hertz

Example:

liwIMPS <rfc_bk.su >rfc_rec.su

Example:

liwIMPS <rfc_bk.su >rfc_rec.su
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G Lithofacies

Comparison with lithofacies are shown in figure 13 to 17.

H Let It Wave

Address: Let It Wave SA
8-16 rue Paul Vaillant-Couturier
92240 MALAKOFF, FRANCE

Phone numbers: +33 1 40 92 54 43
+33 1 40 92 54 54

Fax: +33 1 40 92 54 41
Web: www.letitwave.fr
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(a) Trace (b) lithofacies (c) WV (d) SD

Figure 13: Chinook
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(a) Trace (b) lithofacies (c) WV (d) SD

Figure 14: Atlantis
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(a) Trace (b) lithofacies (c) WV (d) SD

Figure 15: Blackjack
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(a) Trace (b) lithofacies (c) WV (d) SD

Figure 16: Dendara
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(a) Trace (b) lithofacies (c) WV (d) SD

Figure 17: Frampton
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