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Introduction

This report presents Let It Wave’s matching pursuit toogaed to seismic data analysis. This
is an intermediate report, that details the progress mad&rso

Matching pursuit is a spectral decomposition method, whicvides a high-resolution and
more flexibility than other traditional methods like the Giomous Wavelet Transform (CWT)
or the Short-Time Fourier Transform (STFT). The princigdao represent a signal with a cer-
tain number of relevant atoms, waveforms characterizedhby position in time, scale and
modulation frequency. Our goal is to build such a decommosidapted to seismic data and
analysis, such that it could be understood in a global agr,cand extract relevant geophysical
attributes

We will first present the theory of matching pursuit in funtioetail, and that of the Wigner-
Ville transform, a classic display commonly associatedetve will go in further to explain
the changes and adjustments made to fit this technique tpé#uoiis case of seismic data, and
will conclude with our results so far displayed with two @ifént methods to try and emphasize
the information provided by the matching pursuit.



1 The matching pursuit spectral decomposition

Matching pursuit (later referred to as MP) is an algorith@ttvas first introduced by Stephane
Mallat (see [2]). It provides a spectral decomposition oigmal in a very flexible and efficient
manner. The signal is thus represented by a series of "atanasdssociated coefficients, which
are Gabor functions, and their weights. Let us present #ni®ohposition in further details.

1.1 Gabor transform

The basis for the matching pursuit algorithm is what is cominaeferred to as the Gabor
transform. Its principle is similar to a wavelet transforomly with one more degree of liberty.
Indeed, the Gabor transform is the collection of coeffi@gaesulting from inner products of a
signal and a family of waveforms. However, when the CWT fgnslgenerated from a mother
wavelet, dilated and translated for the wavelet transfamthis case the family is generated
from a mother waveform, dilated, translatadd modulated.

The initial waveform chosen is usually a suitably normaliZeaussian that will be called
g(t).

o(t) = % exp|—2t?] 1)

An atomg, s ¢ is now generated from this function and can be identified bgetiparame-
ters:

e positionu
e scales or variancer = 2°

e modulation frequency

From now on this triplet will be called = (u, s, €) It is defined as,

2
g,(t) = K, exp [—27? (t ;su) ] et (2)

Various examples of atoms, including the unmodulated Gabustions are represented in
figure 1. The main difference with the CWT to notice, is howleand frequency can be
independently chosen to characterize an atom. Indeed,ghefdisplays two atoms of same
scale but different frequencies (second and third atomkg)yise there are two atoms modulated
at the same frequency but with different scales (third andtfoatoms). Also, the second atom
from the left has a small scale and a low frequency, while tlueth atom has a large scale and
high frequency, both configurations that don’t exit in a slagontinuous wavelet transform.
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Figure 1: Various Gabor atoms. From left to right: the Gahwordtion, scaleg, frequency$;
scale= frequencyégTN; scale2 frequencywy; scaled frequency=zy, wherewy is the
Nyquist frequency .

Note that in this case the family of waveforms will be redumdfor the purpose of the
pursuit. Nevertheless, a reconstruction of sighfilom the transform can be written as:

+oo
=Y (R"f.9:.)95. 3)
n=0

Of course, in the cases of matching pursuit and continuoweltatransform alike, atoms
are restricted by the Heisenberg inequality in terms of ehapd spectral support(see [1]).
Heisenberg’s inequality states that the variance in tirh@nd the variance in frequeney,
of a functionf € L(RR?) verify:

2 2
o0, >

A

it means that a function can’'t be both perfectly localizediime and frequency. This is
better represented in figure 2. On the right is the tessefiadf the spectral domain by the CWT
atoms (as used by BHP-Billiton), and on the left two boxesashg potential atoms’ support
for the matching pursuit.

Note. It is essential to keep in mind that, though similar in applgahe CWT and the Gabor
transform lead to very different representations and haveetthought of as two separate con-
cepts. In particular, it is important to make the distinotlzetween scale and frequency during
the analysis of a Gabor transform or a matching pursuit.

1.2 Pursuit mechanism
The matching pursuit goes farther than the Gabor transfdtemobjective is to select atoms

that best describe the signal among all possible wavefofims process is iterative and lead to
a very efficient representation of the signal. Starting fribi@ Gabor transform, the principle

10
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(a) Traditional (b) Scale-by-scale

Figure 2: Those figures are intended to show the tessellafitie time-frequency plane by
atoms. On the left, is the representation of two atoms, caim&d by the Heisenberg inequality,
the width of an atom determines it height. In the case of theoG&ansform, atoms can be
positioned wherever in this plane, as long as respect tleiguality. However, in the case of
the CWT, atoms are positioned in a g-determined fashionmab&eaeen on the right figure. Of
course, Gabor transform atoms can assume all the positfdhatof the CWT and more.

is at each step to select the atom that best matches the,digemlsubtract it from the signal,
and start again. This requires to know the Gabor transforaffictents of each modified signal.
Because computing the remainder, then its Gabor transfatregch step would be very costly,
the trick is to compute the Gabor transform only once, thetude the new coefficients for each
step from the previous one, we will refer to this step as coieffits updating.

The pursuit can be summed up in a few step. Given the Gabaftran defined by equation
3. Defineg.,,, such that:

<f7 g'yo) = Iilgl\)ﬂfa g'wc>
Then, if R°f is the remainder of a signal minus its most important atom:

Rof - f - <f7 g’Yo).g’yo (4)

From there, the process has to be repeated on the remaiadéterits transform, then find
the maximum and subtract, and so on, recursively. Howewenpeiting once again a Gabor
transform is out of question. To avoid the computationat,cost note that from equation 4,
we can derive:

<R0f7 .g’y> = <f7 g’Y> - <f7 g’yo><g'yovg'y> (5)

and recursively, we obtain the equation for updating inmedpcts:

(R™™f,94) = (R [, 9y) — (R"f, 97.) (G- 9) (6)
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Note. About real and complex atoms:

So far the atoms used in this process were all complex valbédourse, in terms of display
and analysis, this is neither practical, nor realistic. at@ms we are working with eventually
are real atoms obtained from the usual combination of a cexmgitiomn and its complex conju-
gate. Lety, , be the real atom, then:

v, = Kwé(eid)gv + e_id)gf/) (7)

(Note thatgzkw@ = G(u,s,—¢))

Even though most intermediate computations are made usimglex atoms, the resulting
process is kept in the real domain, by subtracting a real &tmmthe signal at each step. Hence
the true updating equation is:

(R f,gy) = (R [, 9y) — (R [, Gy.6) (Grymrr 97 (8)

1.3 Matching pursuit lexicon

Matching pursuit comes with a small lexicon very similarhat of coding. This is just a small
summary to clarify the terms employed in this report and aditveares.

e Atom : Any waveform obtained from the original Gaussian throughslation, dilatation
and modulation, and following equation 2.

e Dictionary : The collection of all atoms considered in the pursuit, frerhich the
matched atoms can be selected.

e Book : This is the output of the matching pursuit, it is the coliestof selected atoms
paired with corresponding coefficient.

1.4 Wigner-Ville transform

In praxis, the output of the matching pursuitis a collectbatoms defined by three parameters,
position, scale and frequency. This means that a basic apiproould use a three-dimensional
object to describe the decomposition of a one-dimensidgahbs like a single trace. We are
aiming for ( and have designed) a same-D representationevewa common solution was
devised by J.Ville in [3], following the work of E.P. Wigne#(), with the Wigner-Ville trans-
form. It consists in representing the addition of all atorosifier transform. The Wigner-Ville
distribution of a functiony is defined as follows:

WV f(u,€) = /_:O f (u + %) f <u - g) e~ dr

+oo . R )
o (5 ; g) 7 (5 - g) et ©)

One advantage of this distribution is that it doesn’t capseading of atoms support, i.e. the
time support of a Dirac function is still a Dirac function. dur particular case, the distribution
becomes:

12
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WV ikl = > [(R"™f, g0} "WV gy [n, k] (10)

m=0

whereWVg,[n, k] is a bi-dimensional Gaussian centered'if,, {,,) and dilated by2°*~
in time and2~—*~ in frequency. Figure 3 shows the Wigner-Ville represeptabf a matching
pursuit completed on the signal shown in figure 1.

Figure 3: A simple example of the Wigner-Ville represerdatof a matching pursuit on the
signal displayed in figure 1. All atoms were chosen to haveséimee energy, hence their similar
colors. The horizontal axis is the frequency axis, the gattone represent time. The shape
of atoms is determined by their scale, notice how the firstnatecale O is very elongated in
the horizontal direction (like a Dirac) and how the last aj@tale 4 is elongated in the other
direction.

2 Scale-by-scale matching pursuit

The original matching pursuit algorithm wasn't particlyjantended for seismic data analysis.
Our mains concerns here were the fact that we needed to espatial continuity among traces
for coherent interpretation and that we needed to sepdraiafluence of the measuring wavelet
from the real signal information since our data are convilvé/e have hence brought some
changes to the traditional algorithms and developed soher tdols to suit our needs.

13



2.1 Limits of regular matching pursuit

As mentioned previously, spatial continuity is a prerej@it any coherent analysis on seismic
data.

Matching pursuit picks out atoms best suited to descrihgesires. Hence the choice of an
atom affects the rest of the process, creating a new ressttyradl, basis for the following steps.
Also, if slightly altered, a structure may be, for examplestfitted by a large atom instead of
a series of smaller ones. Because of all this, the resulteoiftomposition may be different
from one trace to the other. Of course, it won't be altogettiferent, and the discrepancies
usually concerns larger scale modulated atoms which adehgo fit. To alleviate this problem,
one solution consists in doing 'scale-by-scale’ matchingspit. The principle is to compute
the pursuit several time on sub-dictionaries, each of thentaining atoms corresponding to
one fixed scale. Thus, we can ensure to control atoms at eadd schich provides lateral
continuity from one trace to the other.

Figure 4 shows the differences between a regular matchimgufitand a scale-by-scale
treatment, on Scarborough’s reservoir, at a fixed frequelngygosing a scale by scale analysis,
makes sure that there is an even number of atoms at each scale.

i 94‘0359+05 4,038e+05 4,04e+08 4,042e+05 4,044e+05 i 94‘0359+05 4,038e+05 4,04e+08 4,042e+05 4,044e+05
\ ) ] PI ] I

\l |!|| "ICM 'M .‘:h '*’H“ .n“ '{
" I||||||"|l|| MU AN
w , Ww _

B2 I“l‘ ‘l"r\;.t“‘d‘il |:' Ii‘vf Ji 'h” '!'.

(a) Traditional (b) Scale-by-scale

Figure 4. Figure on the left shows the Wigner-Ville of a machpursuit made on Scarbor-
ough’s reservoir (at fixed zero frequency). The computaisomade on scale 0 to 5 and with
50 atoms per trace. On the right, the same Wigner-Ville omta&ching pursuit scale-by-scale
of the same data set. Atoms are still between scale 0 to 5, &h®®atoms per trace and per
scale.
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2.2 Algorithm

This is the algorithm implemented for the scale-by-scaléchmag pursuit inl i wivPS only. It
is a scale-by-scale algorithm and represents only the teketd our process.

For each trace and each scale:

1. Compute the Gabor transform (over the appropriate dietip)
2. Find the max over all coefficient and the correspondingnaig
3. Addg,, to the book
4. From(n)to (n+1)

(a) Update the dictionary

(b) Update coefficients

(c) Determine the new max over all coefficients, and corradpw atomy.,,

(d) Addg.,, to the book

(e) Test the energy corresponding to the word, if it is lesstthe threshold, stop, other-
wise start step4) again

2.3 Examples and displays

Here our some examples of what this software can do. Follpaia representations of decom-
positions of reflectivity. Reflectivities are the best sigiwaappraise the matching pursuit since
they are the only signal free for the interference of the meag wavelet.

The matching pursuit is a technique that provides a wealtimfofmation on the signal
with a decomposition on position, scale and frequency. Taditional display method is the
Wigner-Ville display as mentioned earlier. However, thispday is hardly comparable to that of
a CWT. Hence, LIW has designed a simplified display, showhegspread of atoms according
to their position and scale, the later referred to as, sbglseale display. It is computed with
| i wSScal eDi spl ay. Figure 5 shows the matching pursuit of a trace comparedstGWT
decomposition.

For a thorough analysis, the Wigner-Ville display is howawere recommended. Below in
figure 6 examples of what can be done using BHPViewer to takeddvantage of it.

Both! i wSScal eDi spl ay andl i wWS include options to filter out data along scale and
frequency.

3 Normalization

Common seismic signals result from geological measureshande have been convolved by
the measuring wavelet. This convolution 'taints’ the réeshbwn by any spectral decomposition
if no additional processing is performed. It is essentiddécable to recover the original infor-

mation present in the signal and to discriminate it from infation of the measuring wavelet.

Two softwares have been developed in order to represent #dtehing pursuit as it would be

before convolution.

15
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(a) Matching Pursuit (b) Seismic trace (c) CWT

Figure 5: Comparison between a matching pursuit and a CWIT.the matching pursuit de-
composition of trace from Scarborough in a time vs scaleldigenter, said trace and right
the CWT after smoothing.

3.1 Mainideas

The problem of deconvolution on seismic data is a very didicaon-trivial one. First of all,
it is extremely difficult to extract the measuring waveleirfr data or plan its behavior. That
means that it is impossible to just 'inverse’ the filter. Witbxt to no reliable information on
the wavelet, we need to perform that is generally referreabta 'blind deconvolution’.

The principle of such a method, is to try to find a way to gatheraalel of the filter directly
from the observed data, than to try and inverse it. In ordexjgain this procedure, let us go
back to classic representation of a matching pursuit.

The matching pursuit decomposes a seismic sigresd a sum of Gabor atongs adaptively
chosen:
S = Z Cy Gy
.

Its energetic representation is obtained by summing theggroé the different atoms :

E(S)=) e, Elgy)

~

whereE(g) is either the Wigner-Ville energy spectrum of the atom ositale by scale spectrum
representation.

The seismic signab is the convolution of the reflectivity? with a seismic wavele¥ (we
will for now overlook any additive noise) and thus

R*\Il:S:ZcA,gA,
v
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Figure 6: Three slices of a Wigner-Ville visualized with BRRewer at three different frequen-
cies,0,%, wy, wherewy is once the again the Nyquist frequency. The original datasence
again a close-up on Scarborough'’s reservoir, the exact saméhat was displayed in figure 4
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If the waveletV was known, the reflectivity could be obtained from the secsimaice through
a simple convolution withi ! :

R=R+U¥ =S50 =) ¢ g, ¥
Y

The energetic representation fwould thus be approximated by :

E(R) =) _le,] E(gyx ¥

Y

As stated before, this is an ideal representation, one #ing difficult to have access to, but
one that can be approximated.

To stabilize the display with respect to the wavelet, we cledo approximaté (g, x ')
by )\,ZYE(gV). This is equivalent to saying that the Gabor atoms are app@te eigenfunctions
of the convolution operator. This is very similar to the urgiag technique used in BHP’s
renormalization for the CWT.

The main issue lies in the choice of the parametersonly the seismic trac§ is observed
and the waveletr is unknown. Fortunately, the classical hypothesis thatrdikectivity R
follows the white noise model gives a way to estimate thisThis hypothesis can be reinforced
by considering a spatial average of the reflectivity instefithe reflectivity.

Indeed for anyy, a local average in time yields over the that are translate af,
E((S, 9v)1*) = B((R* ¥, g;)*) = E(|(R, g  ¥)|?)

with I the conjugate reverse @f.

Note now that ifR is a white noise, this quantity is a good estimate| @f x ¥||3 up to a
constant factor. As the power spectrum of a white noise istaom, this is indeed the variance
of (R, g, » V) which is the same &R, g, x V).

Assumey,xU~! = X\ g, which is true for any eigenvalue &f and supposed approximately
true forg,, theng, x ¥ = 5-g,,

[

1
gy > W|* = <5 llg,
A

and as the, are normalized :
1

A2
2
E(|(S, g,)[?) is thus a good candidate estimate for

gy > ®|J* =

The proposed renormalization is then obtained by the fotigiormula
E(R) =) ——=—5E(9)
Z,: E(I(S, 9,02

whereS is a spatial average of the seismic traces Brisla local average over the Gabor atoms
that are translates of,.

One should note that using a local time average instead aftmbtime average makes the
whole process robust to a deformation of the seismic waagdeig the trace.

18



3.2 Implementation : liwmpcoeffs and liwmpnorm

The normalization is implemented in two steps. First, coiffitsE(| (S, ¢/)|?) are computed
over a dataset, then each trace is normalized using thoffecenes. Because coefficients only
need to be computed once over a dataset and not for eachthratep processes were separated
into two softwares for more efficiency.

Let us definev, as the correction coefficients for each atgmThea, coefficients are com-
puted byl i wnpcoef f s over a whole block of traces, then, it is a simple matter perfxd by
| i wrpnor mto normalize the book, the new coefficientsare obtained simply by multiplying
each coefficient:

/
Coy = QUy % Cy
If there were no additional noise, the correction coeffitsemould be:

1
E(I(S,9:)1?)

However, since it is a rather unreasonable assumption, westamate the noise level over
the signal and represent by its variance The corrections coefficients then become:

_YE(E.9P)
E((5,9:)P)

Finally, because the previous expression is not alwaysetgfime will introduce parameter
e and rewrite the coefficients in their final form as follows.

\/max (S, g,)[2) — 02,1076)

Oé = min )

E(|(S, gy)[?)

a ]

3.3 Pre-normalization

The normalization is performed on the book of atoms and reosifnal itself. An important ad-
vantage of this method is that while there is always a riskngblefying noise while performing
a deconvolution, the risk is minimum here as the matchinguyitiperforms inherent denoising.
In other words, the book of atoms is devoid of noise, hencenabration should induce no
noisy phenomenon.

However, 'post-normalization’ has some drawbacks. Aftemwlution with the wavelet,
atoms are likely to be slightly shifted if not always in pasit, at least in frequency (scale is
relatively stable). The post-renormalization can put eagiion some atoms or decrease the
importance of others, but it won’t change their coordinatésvould be really good to be able
to normalize the convoluted signal directly to reveal theali atoms. However, given the non
negligible presence of noise in seismic signal, this sgratauses great difficulty as the dreaded
phenomenon of noise amplification occurs.

The solution is to pre-normalize, but 'not too much’. One wayealize that is to use the
parameter defined in section 3.2. This parameter was intextito avoid divide-by-zero cases,

19



(a) Before normalization (b) After normalization

Figure 7: On the left, the Wigner-Ville representation o thatching pursuit decomposition of
a seismic trace taken from Neptune. On the right, that of trenalized book of atoms.

but it can be used to moderate amplification through norraadin. Indeed, only atoms associ-
ated witha., coefficients greater thahare amplified. Obviously this is approximately realized
whenmax(IE(|(S, g,)[?),¢) < 1, thus one way to ensure that there will be no amplification is
to sete to 0. This causes the pre-normalization process to eliminateesatoms by reducing
their weight, and will not amplify noise.

In praxis, it is not necessary to seto 0, values like0.1 or 0.01 do a reasonable job and
generally do not cause unwanted noise amplification. Howeirece this is performing a "full’
normalization it is best to combine it with a pass of post ralieation, applied with a much
smaller value ot.

4 |Inverse transform

The Gabor transform can be inverted, we can reconstructigimialsfrom the book of atoms.
This provides many interesting applications. The most &niyging de-noising, by selecting
only relevant atoms the matching pursuit gets rid of the eg@ntained in the signal, the re-
constructed signal will hence be free of noise. Others appbns come from filtering. It is
possible to process or filter the book atoms before recoctstig for analysis purpose. Some
basic functions are implemented in our software since ibsspble to filter atoms according to
their scale or frequency.

20



4.1 Reconstruction

Let us go back on the general equation of the regular matgiunguit.

F=Y (R"f, 9,9 (11)

After N iterations of the algorithm, we can partially reconstrine f.

N
f Z R"f, gvn 9y
n=0

In the particular case of scale-by-scale matching purswgtcan derive a very similar re-
construction formula. Indeed this reconstruction holde tfor each scale individually, thus
reconstructing the signal from the whole book, is a matteawwraging the reconstructions
from each scale.

S—1

-3 Z(é R"f, g+, 9%) (12)

s=0

wheres is the number of scales.

4.2 Examples

Let’s start with the reconstruction of a single trace, ectied form Pyrenees. Figure 8 shows the
type of reconstruction that can be obtained by performingaéching pursuit using0, 50, 100
and250 atoms per scale. A very similar comparison could be madegusimaller and smaller
thresholds.

Figure 9 shows the reconstruction of a whole slice of data$éis was obtained with a
scale-by-scale matching pursuit performed on five scaldsaunnting 500 iterations for traces
of 751 points. This is a very high number of iterations to ¢des and only used here for
demonstration purpose. A smaller number of iterations @qubvide almost the same result.
Still, it is interesting to note, that although there ardatiénces, the reconstruction is almost
perfect and not suffering much form lateral discontinuitgllems.

5 Workflow

5.1 Block diagram

Figure 10 shows a block diagram of possibilities in usingaftwares. The choice of workflow
really just depends on the type of data that is processedhehié might be simple reflectivities
or real seismic traces.

Note that in case the aim is to obtain a perfect reconstmgctivze book of atoms should
never be normalized. However, the reconstruction of a nbzerhdataset can offer insights on
what 'should be’.

21



H
=
-
i

121 121

=
=]

0,9 0,9 0,9 e i 0.9
| L = i T
i L i £ i £ = A = £
S § i _
.r o b I I
= = = = =
1.1 - L: 1.1 E 1.1 : E— 1.1 i— 1.1 F
£ " ] i ¥
¢ | L + k3
— & s i L=
1.2 E 1.2 :: 1.2 ,': 1.24 %: 1.24 E
L ; H 1 L
= r = N
1.3 ‘ 1.3 1.3 1.3 1.3 ‘
1.4 'L 1.4 1.4 R4 1.4 2 1.4 \/‘L
T L i N
a = -~ r
1,64 T 1,64 1,64 k 1,64 ;— 1,64 T
(a) Original (b) 10 iterations (c) 50iterations  (d) 100 iterations (e) 250 iterations

Figure 8: On the far left, the original wigb depiction of thgrsal. Remaining figures show the
reconstruction of this signal after a matching pursuit ageposition using various numbers of
iterations. Figure b and c already show how it is possiblextoaet relevant information from
the signal with few iterations, going to much higher numbére reconstruction ends up near
perfect.

400 EO0 200 1000 1200 1400 400 EO0 200 1000 1200 1400

(a) Original (b) Reconstruction

Figure 9: On the left the original dataset, on the right itsorestruction, minor differences can
be seen especially in the upper right corner of the image.
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if pre-norm
no
set of seismic traces yes
+ coeff inner products- -

N liwmpcoeffs

4
4

4 (coeff soft)

set of normalization coefficients

\
\

seismic dataset --%
+scale-by-scale inner products

liwMPS

/

book(s) in su file «-~

if norm e
set of seismic traces yes
+ coefficients inner products
AN

liwmpcoeffs

N

_ s (coeff hard)
set of normalization coefficients

book(s) -=
N liwmpnorm

normalized book(s) ~ -~

iwSScaleDisplal liwwWVS liwIMPS

<<

Scale-by-scale display Wigner-Ville display Reconstructed dataset

Figure 10: Block diagram of a typical workflow.
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5.2 Examples of script

Following are two examples of scripts used on seismic datetier it would be reflectivities
or noisy, convolved, seismic data. The examples were takem Pyrenees. We will first show
how to proceed on the reflectivity. The results are displagdidjure 11.

i WWPS <rfc_Crosby-2 full little.su scale_max=5 nb_iter=500
product _dir=/storage/l annes/ Seisnic >rfc_bk. su

i WWS <rfc_bk.su >fc_W.su
I i wSScal eDi spl ay <rfc_bk.su >rfc_W. su

(@) Wv (b) SD

Figure 11: The results of the matching pursuit, let the WigWile representation, right the
scale-by-scale display.

On to the 'real’ case. This includes pre-normalization ambrmalization. Figure 12 show
the results with and without normalization.

i wpcoeffs <m gl6_pst_full _il1434.su scal e_max=5 wi ndow=100
product _di r=/storage/l annes/ Sei sm ¢ enhance_I evel =0. 01 >coeffs_soft.su

i WWPS <seismic_well_Crosby-2 full little.su scale_nax=5 nb_iter=100
product _dir=/storage/l annes/ Sei sm ¢ norm=1l i nput _coeffs=coeffs_soft.su
>sei sm c_bk. su

i wnpcoeffs <migl6é pst full _il1434.su scal e_max=5 wi ndow=100
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product _dir=/storage/l annes/ Sei sm ¢ enhance_I evel =0. 000001
>coeffs_hard. su

I'i wrpnor m <sei sm ¢_bk. su i nput _coeffs=coeffs_hard. su >sei sm ¢c_norm su

I i WWS <sei smic_norm su >norm W. su
| i wSScal eDi spl ay <sei smic_norm su >norm W. su

(a) Before normalization (b) After normalization

Figure 12: On the left, the Wigner-Ville representation loé imatching pursuit decomposition
of the seismic trace. On the right, that of the normalizedkoafcatoms. When comparing with
the previous figure, it is obvious that the high-frequenayteat has mostly disappear, but some
structures are partially recreated.
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A liwMPS

[l annes@i w67 bhp]$ | i wivPS

LI WWPS -

i WPS <stdin scale max= nb_iter= conpute= wite= >stdout

stdin | nput, dataset to anal yse
st dout | nput, book of atons

Requi red paraneters:

scal e_max= I nput, maximum |l ogarithm c scale of the deconposition
Scales go fromO to sclae_max, or 3xdt to
(2™(scal e_max+1)) *=dt
nb_iter= | nput, maxi mum nunber of atonms to conpute per trace
product _dir= | nput, nane of the directory containing atons
i nner products

Opti onal paraneter

conput e=0 =1 to re-conpute inner products between atons
write=0 =1 to wite the table of inner product in a RAWfile
t hr eshol d=0 proportional threshold on atons’ energy
Al gorithm stops either when the energy falls bel ow
t he threshol d+si ngal _energy or when nb_iter is reached.
e.g. 0.01, nmeans the algorithns stops when the
energy of the residual signal represent 1% of
the energy of the original signal or after
nb_iter iterations, whichever cones first
nor m=0 =1 to pre-nornalize
grid=1 factor of grid refinement, 1 is mninmm
2 is twice finer and so on
default is 1, corresponding to a 1/2 overlap
bet ween at ons
i nput_coeffs filenane containing coefficients needed for
normal i zati on
ver bose=0 =1 to all ow advi sory nessage
=2 to display details about every atons

Header words:

ns 5«nb_iter+(scal e_max+1)
mar k scal e_max
cdpt I ength of the original trace

For each atom the output book of a trace stores in the follow ng
order:
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- its scale, as an integer between 0 and scal e_max
i ncl uded

- its position, as an integer corresponding to the
sanpl e nunber

- its frequency as an integer corresponding to its
i ndex representation

- its coefficient as two floats, the real and

i magi nary part

Exanpl e
[ i WWPS <nept _depth reftrace_long.su scale nmax=5 nb_iter=100

t hreshol d=0. 01 product _dir=/storage/l annes/ Seisnic nornel
i nput _coeffs=coeffs_soft.su >nept_pre_bk.su

Example of command line, to perform matching pursuit wite-pprmalization.

I i WPS <nept _depth_reftrace_long.su scale_nmax=5 nb_iter=100
t hr eshol d=0. 01 product _di r=/storage/l annes/ Sei sm ¢ nor n=l
i nput _coeffs=coeffs_soft.su >nept_pre_bk. su

B liwmpcoeffs

[l annes@i w67 bhp]$ |iwnpcoeffs

LI WMPCOEFFS -

I i wrpcoeffs <stdin scal e_max= w ndow= product _dir= >coeffs.su
Requi red paraneters:

scal e_max | nput, maxi mum scal e consi dered
product _dir | nput, directory containing atons inner products

Opti onal paraneter

wi ndow=0 Si ze of the tinme-averagi ng wi ndow
Default at 0 automatically sets the | ength of the
wi ndows to be the length of the signal, hence assuning
the wavelet is tinme-invariant over the |ength
of the signal
ver bose=0 Default 0 is no nessages
=1 is estimated energy of the signal
=2 is general information (including estimted noise)

conput e=0 =1 to conpute inner products
write=0 =1 to wite the table of inner product in a RAWfile
noi se_| evel i mpose noise level in dB, otherw se conpute

if Eis an estimate of the signal’s energy than the
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noi se level in dBis witten as
N dB = 10 log( Sigma~2 / E)

enhance | evel coefficient to limt anplification,
1 is no anplification
0.1 or 0.01 are recomrended for pre-normalization
0. 000001 for full normalization
default is 0.001
correction coefficients belong to
[ enhance_l evel , 1/ enhance_l evel ]

corr_mn i mposed m ni mumon correction coefficients
default is equal to enhance_l evel
correction coefficients belong to
[corr_m n, 1/enhance_l evel]

Note that the energy of the signal is estimted and can be out put
t hrough verbose

About header words:

ep | ogarithnic scale of atons
cdp frequency i ndex of atons
Exanpl es

[ i wmpcoeffs <nept depth_refline_ |ong.su scale nax=5 w ndow=100
product _dir=/storage/l annes/ Sei sm ¢ enhance_I| evel =0. 1
>coeffs _soft.su

[ i wmpcoeffs <nept depth_refline | ong.su scale nax=5 w ndow=100

product _dir=/storage/l annes/ Sei snm ¢ enhance_I evel =0. 000001
>coeffs_hard. su

Two examples of command line, depending on whether the caafts are to be used for
pre-normalization or for the regular normalization.

| i wpcoeffs <nept _depth refline_long.su scal e _nmax=5 w ndow=100
product dir=/storage/l annes/ Sei sm ¢ enhance_| evel =0. 1
>coeffs_soft.su

| i wrpcoeffs <nept _depth_refline_|ong.su scale_nmax=5 w ndow=100

product dir=/storage/lannes/ Sei sm ¢ enhance_| evel =0. 000001
>coeffs_hard. su

C liwmpnorm

[l annes@i w67 bhp]$ |iwrpnorm

L1 WWPNORM -
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[ iwnpnorm <stdin input_coeffs= >stdout
Requi red paraneters:

i nput _coeffs= Input, sufile containing correction coeffcients

Opti onal paraneter:

ver bose=0 =1 to allow advi sory nessage

wi ndow=ns | engt h of the averagi ng wi ndow, defaults
is whole I ength of the signal
a reasonabl e choice is to pick sanme val ue
as used for |iwmpcoeffs
(a sumalong the time axis using a sliding w ndow
is performed to ensure all scal es have the sane
total energy, this wi ndow represents the number of
sanpl es to consi der)

Exanpl e

[ i wnpnor m <nept _pre_bk. su wi ndow=100 i nput _coeffs=coeffs_hard. su
>nept _norm su

Example:

I i wrpnor m <nept _pre_bk. su input_coeffs=coeffs_hard.su >nept _norm su

D liwWVS

[l annes@i w67 bhp]$ | i wwWws

LI WWS -

i WWS <stdin >st dout

stdin I nput, su file containing book of atons

st dout Qut put, su file containing display

Optional paraneter:

scal e_m n=0 Di spl ays only atons of scal e above scale_min

scal e_max=100 Displays only atons of scal e under scal e_max
Scales are logarithnmc and start fromO.

Scale n corresponds to n atomof size ( 2(n+1)+1 )=*dt
freq_m n=0 Di spl ays only atoms of frequency above freq _mn
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freq_max=3.14 Displays only atonms of frequency under freq_nax
Frequencies go fromO to pi=3.14 where pi is 1/dt
Frequencies are kxpi/N, k fromO to N where Nis
max nunber of frequencies
and corresponds to k/(N«dt) is Hertz

nb_freq Nunber of frequencies considered for the display
(sanmpling of the display)

vel oci ty=2500 Velocity used to conpute bed thickness fromscale

ver bose=0 =1 to allow advi sory nessage

Header words:

f1l Frequencies in Hz

f2 Wavel ength in m

cdpt Frequencies’ indices k as in kxpi/N
Exanpl e:

[ 1 WWS <nept_norm su >nept W. su

Example:

| i WWS <nept_norm su | suxi mage perc=99

E liwSScaleDisplay

[l annes@i w67 Neptune]$ |iwSScal eDi spl ay

LI WSSCALEDI SPLAY -
I i wSScal eDi spl ay <stdin >st dout

stdin I nput, su file containing book of atons
st dout Qutput, su file containing display

Opti onal paraneter

scal e_mi n=0 D spl ays only atonms of scal e above scale mn
scal e_nmax=100 Displays only atons of scal e under scal e_max

Scales are logarithnmc and start fromO.

Scale n corresponds to n atomof size ( 2*(n+1)+1 )=dt
freq_m n=0 Di spl ays only atoms of frequency above freq _mn
freq_max=3.14 Displays only atons of frequency under freq_max

Frequencies go fromO to pi=3.14 where pi is 1/dt

Frequencies are k+xpi/N, k fromO to N where Nis

max numnber of frequencies

and corresponds to k/(N«dt) is Hertz
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vel oci ty=2500 Velocity used to conmpute bed thickness fromscal e
ver bose=0 =1 to allow advi sory nessage

Header words:

f2 Bed thickness in m
cdpt Log scale (+1)
Exanpl e:

| i wSScal eDi spl ay <nept_norm su >nept_SD. su

Example:

| i wSScal eDi spl ay <nept _norm su suxi nage perc=99

F liwlIMPS

[l annes@i w67 Neptune]$ |iw MPS

LI W MPS -

[iwl MPS <stdin >st dout

Opti onal paraneter:

ver bose=0 =1 to allow advi sory nessage
scal e_m n=0 D splays only atons of scal e above scale_mn
scal e_max=100 Displays only atons of scal e under scal e_max
Scales are logarithmc and start fromO.
Scale n corresponds to n atom of size
( 2 (n+1)+1 )=dt
freq_m n=0 D splays only atonms of frequency above freqg_mn
freq_max=3.14 Displays only atons of frequency under freq_nax
Frequencies go fromO to pi=3.14 where pi is 1/dt
Frequencies are k+xpi/N, k fromO to N where Nis
max numnber of frequencies
and corresponds to k/(N«dt) is Hertz

Exampl e:
liwl MPS <rfc_bk.su >rfc_rec.su
Example:
liwl MPS <rfc_bk.su >rfc_rec.su
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G Lithofacies

Comparison with lithofacies are shown in figure 13 to 17.

H Letlt Wave

Address: Let It Wave SA
8-16 rue Paul Vaillant-Couturier
92240 MALAKOFF, FRANCE
Phone numbers: +33 1409254 43
+33 14092 54 54
Fax: +33 1409254 41
Web: www.letitwave.fr
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