
Transcript of 
“A transformational approach to collective behavior” 

Hello.  My name is Michael Glinsky of BNZ Energy Inc.  I will be speaking to you today about “a 
transformational approach to collective behavior”.  Here, I mean both an approach that will 
transform science, and an approach that uses a mathematical transformation.  I will not bore 
you with the background and inspiration for this new theory.  You can find that in the 
companion arXiv paper at the link from the title in the PDF of the slides, or in the description of 
this YouTube video. 


We consider what we call “collective” systems, that can range from an elementary field, to a 
fluid, to an economy.  They have traditionally been called “complex” systems.  Although, we 
will find that they are holomorphic, they have an underlying simple emergent behavior.  So, we 
define a collective as an ensemble of individuals that are conservatively interacting.  What one 
individual of the collective loses, another gains.  This does not exclude external interactions, 
but we will find external interactions can not change the topology of the collective.  You can 
see various different collectives, and their corresponding individuals in the beige box on the 
upper left hand side.  The transformation of mathematical constructs, going from the individual 
to the collective are shown in the beige box on the upper right hand side.  We call your 
attention to the transformation of the low dimensional phase space of canonical momentums 
and coordinates (p,q), to the Hilbert spaces of canonical field momentums and fields [π(x),f(x)].  
The most important transformation is going from the generating function of a canonical 
transformation, to the generating functional of a canonical transformation, shown in the green 
box on the lower right hand side.  The function or functional can also be represented by the 
Taylor expansion coefficients.  We will use the methods of genAI to approximate the function as 
a solution to the Hamilton-Jacobi-Bellman (HJB) equation, and the functional as the deep 
deconvolution of the Heisenberg Scattering Transformation (HST) followed by a Principal 
Components Analysis (PCA).  


Symmetry is fundamental, beautiful, and simple.  This was a core belief of both Paul Dirac and 
Murray Gell-Mann, and is the foundation of our new theory of collectives.  We start by 
assuming at least one Lie group symmetry, associated with a Hamiltonian, and possibly more.  
The symmetry leads to a weak Noether invariant, that while conserved for internal interactions, 
changes with external interaction.  In fact, is the only thing that changes with an external 
interaction.  We then analytically continue the real Hamiltonian by solving the HJB equation, or 
equivalently the Cauchy-Riemann equations.  This give the analytic Hamiltonian, H(β), or 
equivalently the energy and action.  The singularities of the analytic Hamiltonian, β*, can be 
found, leading to the strong topological invariants that are conserved during external 
interactions.  The result is the collective undergoing geodesic motion.  


Here we show the complex Lie groups, the collective field, and the underlying individual or 
Reduced Order Model (ROM) of genAI, for several collectives as a function of increasing 
characteristic time scale, that is decreasing energy scale.  They range from the SU(3), SU(2) 
and SU(1) of the elementary fields identified by Gell-Mann, to the gravitational field whose 
Hamiltonian was identified by Dirac.  Also shown is an anharmonic phononic field based on the 
Hamiltonian of a pendulum clock shown here, and the weather field with an underlying low 
dimensional model such as the Lorenz model. 


Here is the series of two canonical transformations.  The first is from the phase space of the 
collective [π(x),f(x)], generated by the Sp[f(x)] functional, the HST, to the phase space of the 
individual (p,q).  This is a deep deconvolution.  The second is from the phase space of the 
individual (p,q), generated by the SP(q) function, the solution to the HJB, to the phase space 



A transformational approach to collective behavior page ￼   2

(P,Q) aligned with the foliation of the phase space, where dP/dτ=0 and dQ/dτ=ωQ(P).  This is a 
decoder, that will be approximated by a MLP of genAI.  The generating function, SP(q), goes by 
many names:  the canonical flow generator, the action, the entropy, and the log-likelihood.  It is 
also the approximate log-likelihood of GPTs, and the approximate value function or the 
approximate Q-function of DRL or Deep Q-Learning.  It analytically continues the Hamiltonian, 
where the foliations can also be defined as Re(H)=constant=E and Im(H)=constant=ωτ.  Given 
the analytic Hamiltonian, its singularities β* can be found, characterizing the topology of the 
collective.   The canonical transformations, both functional and function, can be be expressed 
as Taylor expansions, that is the S-matrix.


Now to the specifics, first for the HST.  Start by Taylor expanding the analytic Hamiltonian.  
Define the convolutional wavelet transform and consider the analytic trajectory.  Take the 
covector along this trajectory.  Change to radial coordinates.  Rotate by π/2 to get the 
covector.  Define the function R0 in order to make ln(R0) a compact mapping.  This yields the 
recursion relation for the HST.  Given the recursion, the HST can be defined as a deep 
deconvolution with i ln(R0) as the activation function and the Father Wavelet as the pooling 
operator.  Note that the complex logarithm’s, ln(z), real part is log modulus, ln|z|, and imaginary 
part is phase, arg(z).  The activation function ln(R0) is compact, has limits of the log(MST), 
chirped pulse, WPH, and MST (a two sided ReLU). 


Let’s take a closer look at the HST, what it calculates, and its physical interpretation.  
Fundamentally, the HST is a Mayer Cluster Expansion (MCE) in the m-body correlation.  The 
“logarithmic average” is taken, log-phi-star, to give the mean field S0.  Then, the “canonical 
derivative” is taken, i d(ln) or psi-star-log-i, and averaged, by phi-star, to give how one 
individual is distributed, S1.  Then, the “canonical derivative” is taken again and averaged to 
give how two individuals are correlated, S2.  And so on to show how m-individuals are 
correlated, Sm.  The expansion can also be viewed as the m-body scattering cross sections 
or m-body generalized Green’s functions, that is Heisenberg’s S-matrix.  This is the reason 
that we have called this transformation the Heisenberg Scattering Transformation.  The 
structure is obviously that of a deep deconvolution.  This transform, the HST, will give an 
optimal “localized Fourier transform”.  The Principle Components of an ensemble of 
transformations of the collective will give localized spectrums, one for each field, that are the 
solutions to the RGEs!  This can be seen by the form of the RGEs which are that of the 
“canonical derivative” of iS being equal to a scale coupling function that is a function of scale.  
There has been a problem with the historical analysis of the MCE.  There has been the BBGKY 
expansion in the correlation parameter, or the perturbation expansion in the coupling constant, 
as shown here.  There are two problems with this.  First is that the super convergent MCE, has 
been rearranged into the only asymptotically convergent BBGKY hierarchy.  The second is that 
the expansion coefficient, many times, is not much less than one.  The historical solution to 
these problems has been to reorder the expansion back into the MCE using the ad hoc 
renormalization procedure of Wilson and t’Hooft.  As Dirac said, “This is not a mathematically 
logical process.  It is just a set of working rules, rather than a correct mathematical theory.”  
Taking the PCA of the HST is a mathematically logical process of renormalization.


Since H(β) is an analytic function, that is a minimal surface given β*, it will be well approximated 
by MLPs w/ ReLU since they are piece-wise linear universal function approximators.  Here we 
show a neural network architecture that respects the mathematical structure of the canonical 
transformation generated by SP(q).  The partial derivatives are taken by back-propagation 
techniques.  Because of the structure, specific nodes can be identified with specific quantities, 
as shown.  Shown here is the Hamilton-Jacobi-Bellman (HJB) equation.  Note that Bellman 
added a resistivity term.  He did this to stabilize the solution and the collective.  This is a big 
mistake!  It is well known that physics, that is performance, is sacrificed for stability when 
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resistivity is added.  But without resistance, how can the collective be stabilized.  The answer is 
via ponderomotive control that we will discuss, starting in the slide after next. 


Based on the new theory, here is the genAI computational pipeline to simulate a collective 
system.  The input is the initial condition of the collective.  The output is the predicted output of 
the system.  Given this computational pipeline and a dataset, parameters of the approximation 
can be fit.  This is traditionally called “training” the genAI, but we prefer the term “educating”.    
The dataset is constructed by either doing an ensemble of computer simulations, sampled over 
initial conditions and possibly coupling constants, or by observing the collective system.


In order to understand ponderomotive stabilization, consider this system — an electron and an 
ion in a constant magnetic field.  It is assumed that the magnetic field is strong enough that the 
electron undergoes guiding center motion, that is the electron cyclotron motion is an adiabatic 
invariant.  It is also assumed that this magnetic field is strong enough that the motion of the 
electron along the magnetic field is also adiabatic.  This gives two type of bound motion.  The 
first is called Guiding Center Atoms (GCAs), where the ion is assumed to be infinitely massive.  
The second is called Drifting Pairs (DPs), where the electron is assumed to have no mass.  
The phase space motion in (p,q) is shown for two nearly identical orbits that come close to an 
unstable equilibrium.  Note that although the energies only differ by 0.1%, the frequencies 
differ by 13%.  Also note how the motion slows down dramatically as the unstable equilibrium 
is approached.  It would take an infinite amount of time to reach the unstable equilibrium and 
move away from it.  This is why we call them metastable.  Finally, note that the effective mass 
of the system scales as 1/ω2, which goes to infinity at the metastable equilibrium.  This will be 
an important fact to know when constructing the ponderomotive control force.


Here is the complete phase space.  It is divided into three basins.  The basin of GCAs, the 
basin of DPs, and the basin of free particles.  The thermal force resulting from coupling the 
system with an external heat bath is indicated by the yellow arrows.  The stable equilibriums 
are local minimums, while the unstable equilibrium is the desirable local maximum.  This 
equilibrium needs to be stabilized.   Since it is impossible to make real-time measurements of 
the state of a collective system, as will be discussed on the upcoming quantization slide, 
feedback control can not be done.  We already discussed why resistive control is not a good 
idea.  That leaves us with ponderomotive control.  This is demonstrated by this video.


[This equilibrium point is stable, because if we perturb it the pendulum will slowly return to the 
equilibrium point.  The upper vertical position is another equilibrium point, but it is unstable 
because any small perturbation will make it fall to to the lower equilibrium point.  Now, let’s 
power the jigsaw to see what happens.]


The Ponderomotive Method of Control is similar to the way that a sheepdog herds sheep.  It 
runs around the herd very fast, compared to movements of the herd, nipping at the heals of the 
sheep (vibrating them) if they wonder away from the metastable equilibrium.  The sheepdog is 
effectively creating a small alpine valley at the mountain pass.  This is practically done by 
applying a rapidly oscillating constant force to the system.  At the metastable equilibrium, 
because the system has infinite mass, the force will not vibrate the system (technically 
accelerate the system).  The farther the system moves away from the metastable equilibrium, 
no matter which direction, the mass will decrease and the vibration will increase.


I could not resist including a picture of my dog Monty (who is half Old English Sheepdog and 
half American Bulldog) and myself in our happy place, and a picture of Dobby, who is free. 


The complication with a collective system is that it does not have just one frequency, but it has 
several localized spectrums that are functions of both frequency and position.  The genAI 
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computational pipeline to apply the spectrally rich vibration (that is, control force field) to 
ponderomotively stabilize the collective is shown here.  It has a very high frequency carrier, 
along with a random step to implement a cooling thermal force.  This signal is then modulated 
by the iPCA+iHST, imprinting the localized spectrums of the collective system.


When the collective system is observed, and a prediction is made of the field for a time Δτ in 
the future, that can not be done if the time is long enough that system has gone chaotic.  That 
is to say that while P remains constant, Q can not be determined.  These times for several 
systems are shown in this table on the lower left hand side.  There are relativistic limits on the 
measurement of these space-like intervals, given by the Heisenberg Uncertainty Principle.  
For a system moving relativistically, the current state can not be measured.  For a collective, it 
is never possible because of the deep convolution.  To observe the current state, the future 
would also need to be known.  Therefore, the system must be treated statistically.  The Born 
Rule says that to make a measurement on a system, statistically, a force must be exerted on 
the system.  Unfortunately, exerting a force on the system changes the system.  The 
measurement is entangled with the system.  Quantization comes from the averaging of the 
field over Q, and the enforcement of the periodic boundary condition on the average field.  That 
is, not only can Q not be predicted, the number of cycles can not be predicted, but it must be 
an integer, leading to integer quantization.  The primary (or First) quantization of the “internal” 
group action, yields the fermion particles (e.g., electrons and positrons for EM).  The secondary 
(or Second) quantization of the “external superordinate” Ad(group) action, yields the field 
bosons (e.g., photons for EM).  The same can be done for the coupling constants.  For this 
case, Second Quantization is of the “external subordinate” Ad(group) action.  Quantum 
mechanics can now be viewed as a dynamic equilibrium in Q, and statistical mechanics can be 
viewed as a statistical equilibrium or Boltzmann distribution in P.


The Second Quantization of dH and dC leads to the directed graph building block for a 
system-of-systems approach.  The coupling to superordinate parent nodes is via the Second 
Quantized fields of the system, while the coupling to the subordinate child nodes is via the 
Second Quantized coupling constants of the system.  


Gravity can now be integrated into the system-of-systems as the “uber” theory (that is, 
collective system) that integrates all systems together.  It has Dirac’s Hamiltonian of Harmony 
as a symmetry.  The equivalence classes of the equilibrium states can be identified as 
universes (that is, basins of attraction).  The unstable equilibriums which we will call the 
SemiAttractors, are points at which small changes can move the cosmological collective 
system from one universe to another.  If the system is in the universe of a SemiAttractor, that 
system will, via thermal forces move to the SemiAttractor.  The stable equilibriums we call the 
Attractors.  Once the system, near a SemiAttractor, has made a small move into the universe of 
an Attractor, the thermal force will take it to the Attractor.  The Attractors are a “long distance” 
from the SemiAttractors and it will take a large amount of energy to return to the SemiAttractor 
from the Attractor.  The universes of the Attractors are closed, and the universes of the 
SemiAttractors are open.  A SemiAttractor is often times a point of maximal compression, that 
is a Big Bang.  The cosmos can be regulated by coupling the cosmological collective field to a 
cosmological thermal bath with cosmic background radiation temperature of Tc.


The simulation computational pipeline can easily be modified to form a Universal Field 
Translator (UFT) as shown in this slide.  It can convert any type field to any other type of field, 
whether that be a language, a computer or mathematical language, an encrypted language, 
raw seismic data (as recorded at the geophones), or a geologic facies model of the earth.  It 
does that by converting to/from a unique universal maximally sparse representation of the field 
— the ROM.
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Depending on the type of input and output field, the UFT can be many things that range from a 
language translator, to an optimal field compression, to an decryption/encryption, to a 
compiler, to a seismic tomography, to a seismic facies inversion, to a full seismic facies 
inversion.  Note that the training dataset does not need to have matched pairs of the language 
and encrypted version of the language.


The foundational concept for this new paradigm on collective behavior is Lie group symmetry.   
The canonical transformation approach is taken, analytically continuing the real Hamiltonian, 
via solution of the HJB equation, yielding the generating function of the canonical flow.  The 
collective equivalent of the generating function, the canonical generating functional or HST, 
was derived.  It is a deep deconvolution.  A genAI computational pipeline was proposed to 
approximate both the generating functional (HST) and function (HJB).  The collective system 
can now be efficiently forecast (simulated), with high fidelity, for use in Bayesian experimental 
design, optimal system design, and data assimilation (that is experimental data analysis).  
Ponderomotive control can also be implemented to stabilize the optimal system design from 
disruption.  A UFT can be implemented that can be a high performance:  language translator, 
data compressor, decryption/encryption, tomography, and inversion.  Collective field and 
coupling constants can be first and second quantized to form system-of-systems.  The four 
elementary fields (EM, weak, strong, and gravity) can be unified as “a question of geometry or 
symmetry or topology”, and geodesic motion (that is, canonical flow).  The significant 
mathematical development is constructing a mathematically logical process of renormalization, 
with physical interpretation — the HST.


This is how to discover the geometry, that is the topology of collective fields. 

===================================================================== 

Here is some further, supplemental information.   We frame both physics and economics as a 
constrained functional optimization, solved by the Lagrangian, Hamiltonian, or Canonical 
Transformation approach.  The constrained functional optimization is also approached from the 
symplectic geometry direction.  Using the HST as a metric of collective systems, with an 
example, is presented.


The core problem of both physics and economics is constrained functional optimization.  This 
is first approached using the method of Lagrange multipliers, resulting in Lagrange’s equation.  
This is the Lagrangian Approach.  Next, a Legendre transformation can be made to canonical 
coordinates, resulting in Hamilton’s equations.  In the economics and systems control 
literature, this Hamiltonian Approach is known as Pontryagins Maximum Principal of Control 
Systems.  This approach is known to have very useful conservation properties, a canonical 
structure, and symplectic geometry.  Building on the canonical structure, is the 
Transformational Approach.  This approach solves for the generating function of a canonical 
transformation or flow, that is the solution of the Hamilton-Jacobi equation.  This approach 
does not rely on the method of characteristics, so that it can be applied to systems that are not 
integrable, that is stochastic or collective.  Although the Transformational Approach is the 
hardest to solve analytically, it is the easiest to approximate numerically as an analytic function.  
In the systems control literature this approach was developed by Bellman, then used in Deep 
Reinforcement Learning (DRL).  Note that a viscosity term can be added to the HJB equation to 
both stabilize the numerical solution and control the system.  This is equivalent to adding a 
time discount factor into the functional objective.


The three approaches can also be understood from the perspective of symplectic geometry.  
We start with the Poincaré 1-form on extended phase space or Lagrangian.  Integrating the 
form gives the action.  Taking the extremal of the action, δS=0, yields the local equation of 
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motion.  This is the Lagrangian Perspective.  Moving on to the Hamiltonian Perspective, 
consider the Poincaré 2-form which is the symplectic metric.  Integrating the form gives the 
weak constant of the motion, the energy or real Hamiltonian, H.  Identifying the Hamiltonian as 
the infinitesimal generator of the flow, yields the local equations of motion.  Finally for the 
Canonical Transformation Perspective.  Start with the Chern-Simons 3-form.  Integrating the 
form give the strong topological constant of the motion or β*.  This is also known as the 
topological index, the helicity in 3D, and the vorticity in 2D.  This is a global perspective.


The HST can also be used as a metric of collective systems.  It can be used to find the number 
of fields, the dimension of the ground states, and how similar two collective systems are to 
each other.


Here is an example of how the HST can be used as a metric of performance of a tomography.  
Here is the threshold in the performance of the tomography (the maximum possible number of 
circuits elements, 64), and the actual number of circuit elements with a minimum of 5.


The YouTube video of this talk can be found at:  https://youtu.be/27uXk_bdAt4


The accompanying slides of this talk can be found at:  http://www.qitech.biz/tech_papers/
gen_collective_presentation.pdf


An academic paper with the content of this talk can be found at:  https://arxiv.org/abs/2410.08558


An academic paper for a general audience can fe found at:  https://arxiv.org/abs/2401.04846
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