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People involved: 2

•Michael Glinsky (0.5 FTE) 
•Pat Knapp (0.3 FTE) 
•Marc-Andre Schaeuble (0.25 FTE) 
•Will Lewis (1 FTE) 
•Evstati Evstatiev (0.25 FTE) 
•Nikki Bennet (0.25 FTE) 
• James Gunning (CSIRO, 0.15 FTE) 
•Taisuke Nagayama (0.1 FTE) 
•Chris Jennings (0.1 FTE) 
•Brandon Klein (0.25 FTE) 
•Amir Barati Farimani (ASC/CMU, 1 grad student, 1 undergrad student) 
•Matt Martinez (0.25 FTE) 
• Justin Brown (0.5 FTE)



Important characteristics of SNL approach 3

•Data Science feeds Decision Science 
◦ See MatrixDS:  https://tinyurl.com/DAAG19-MatrixDS 
◦ Data Science provides statistical estimates of  risks and uncertainties, inputs to Decision Science 
◦ Decision Science uses interview techniques based on “wisdom of  crowds”, essentially “bookmaker odds” for other 

risks and uncertainties 
•Bayesian assimilation engine is at the core 
◦ Uses all experimental information, with optional simulation constraints 
◦ MLDL surrogates for physics of  diagnostics 
◦ Estimates risks and uncertainties (covariance) 
◦ Estimates value of  information (sensitivities of  outputs to inputs, cross variance) 

•Focus on deficiency in model 
◦ Largest uncertainty, probable bias, and significant distortion of  PDF 
◦ Monitor diagnostics 
◦ Use of  Mallat Scattering Transformation to keep “on manifold”, topological curvature 
◦ Research on causal statistics (CMU) 

•Python based, leveraging expertise of  petroleum industry 
•Researching fast surrogates for rad-MHD simulations (ASC funding of  CMU) 
◦ cGAN and MST (state and transition kernel) 

•Recognize need for “data lake” in the cloud

https://tinyurl.com/DAAG19-MatrixDS


The layers of the paradigm 4

PHYSICS INFORMED 
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=
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Status Quo and Future 5
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PHYSICS INFORMED 
DECISION SCIENCE

?

Realized petroleum and mining technology 6

VOI=$63 million

PHYSICS CONSTRAINED  
DATA SCIENCE
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Early, proof-of-concept for NGPPF 7

PHYSICS INFORMED 
DECISION SCIENCE

?

PHYSICS CONSTRAINED DATA SCIENCE

Bayesian 
inversion
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DEEP LEARNING OF 
PHYSICS 

Kuramoto-Sivashinsky 
equation 

Pathak et al., PRL 120, 
024102 (2018)
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Uses of value of information 8

•decisions, metrics for making the decisions 
◦ diagnostics? 

– what instruments? 
– design of  instruments? 

» lines of  sight? 
» spectral ranges? 
» what needs to be improved? 

– what calibrations? 
◦ what is relevant physics? 
◦ are we neglecting something? 
◦ what experiments should we do? 
◦ how does physics extrapolate? 
◦ what models should be used in the analysis?

Posterior pdf
value of additional diagnostic value of experimental point



A Bayesian calibration framework has been developed for interpreting DMP experiments 9

Experimental observable: 
Velocity of Pu/LiF interface
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Challenges unique to this calibration 10

Brown et al., Journal of the Royal 
Statistical Society Series C, 67, 4 (2018)

! = 1 + 2&'())
+

,-.

1
How do you account for 
correlation between number 
of velocity points (times)?

Amount of information 
contained in a given 
profile: /00 = 1

!

2
How do you efficiently 
sample the posteriors using 
MCMC?

Solution: build a surrogate model 
to emulate the hydrocode

1. Run ~100,000 simulations sampling the 
parameter space to generate training data 
• Massively parallel Monte Carlo

2. Construct an emulator based on training data
• We Gaussian Process (GP) surrogate

3. MCMC on the GP to sample posteriors
• Usual metrics on chain mixing and 

convergence

Autocorrelation time:



Application focus 11

•Stagnation conditions for Magnetic Direct Drive Fusion experiments 
•Analysis of  pulsed power driven DMP experiments 
•Analysis of  MagLIF preheat experiments at NIF 
•Z power flow data analysis 
•Model calibration through focused physics experiments (plasma transport, non-linear instability 

growth, etc.)


