

Data and Decision Science at Sandia National Labs

PRESENTED BY

Michael Glinsky

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2019-13763 PE

² People involved:

- Michael Glinsky (0.5 FTE)
- Pat Knapp (0.3 FTE)
- Marc-Andre Schaeuble (0.25 FTE)
- Will Lewis (1 FTE)
- Evstati Evstatiev (0.25 FTE)
- Nikki Bennet (0.25 FTE)
- James Gunning (CSIRO, 0.15 FTE)
- Taisuke Nagayama (0.1 FTE)
- Chris Jennings (0.1 FTE)
- Brandon Klein (0.25 FTE)
- Amir Barati Farimani (ASC/CMU, 1 grad student, 1 undergrad student)
- Matt Martinez (0.25 FTE)
- Justin Brown (0.5 FTE)

Important characteristics of SNL approach

- Data Science feeds Decision Science
 - See MatrixDS: <u>https://tinyurl.com/DAAG19-MatrixDS</u>
 - Data Science provides statistical estimates of risks and uncertainties, inputs to Decision Science
 - Decision Science uses interview techniques based on "wisdom of crowds", essentially "bookmaker odds" for other risks and uncertainties
- Bayesian assimilation engine is at the core
 - Uses all experimental information, with optional simulation constraints
 - MLDL surrogates for physics of diagnostics
 - Estimates risks and uncertainties (covariance)
 - Estimates value of information (sensitivities of outputs to inputs, cross variance)

• Focus on deficiency in model

- Largest uncertainty, probable bias, and significant distortion of PDF
- Monitor diagnostics
- Use of Mallat Scattering Transformation to keep "on manifold", topological curvature
- Research on causal statistics (CMU)
- Python based, leveraging expertise of petroleum industry
- Researching fast surrogates for rad-MHD simulations (ASC funding of CMU)
 - cGAN and MST (state and transition kernel)
- Recognize need for "data lake" in the cloud

⁴ The layers of the paradigm

6 Realized petroleum and mining technology

PHYSICS INFORMED DECISION SCIENCE

⁷ Early, proof-of-concept for NGPPF

8 Uses of value of information

- decisions, metrics for making the decisions
 - diagnostics?
 - what instruments?
 - design of instruments?
 - » lines of sight?
 - » spectral ranges?
 - » what needs to be improved?
 - what calibrations?
 - what is relevant physics?
 - are we neglecting something?
 - what experiments should we do?
 - how does physics extrapolate?
 - what models should be used in the analysis?

value of experimental point

9 A Bayesian calibration framework has been developed for interpreting DMP experiments

Z experiments are designed to be accurately modeled through 1D MHD simulations

10 Challenges unique to this calibration

Autocorrelation time:

 $\nu(k)$

 $\tau = 1 + 2$

How do you account for correlation between number of velocity points (times)?

How do you efficiently sample the posteriors using MCMC?

Solution: build a surrogate model to emulate the hydrocode

- 1. Run ~100,000 simulations sampling the parameter space to generate training data
 - Massively parallel Monte Carlo
- 2. Construct an emulator based on training data
 - We Gaussian Process (GP) surrogate
- 3. MCMC on the GP to sample posteriors
 - Usual metrics on chain mixing and convergence

Brown et al., Journal of the Royal Statistical Society Series C, 67, 4 (2018)

11 Application focus

- Stagnation conditions for Magnetic Direct Drive Fusion experiments
- Analysis of pulsed power driven DMP experiments
- Analysis of MagLIF preheat experiments at NIF
- Z power flow data analysis
- Model calibration through focused physics experiments (plasma transport, non-linear instability growth, etc.)