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Questions to ask ourselves

e About Artificial Intelligence:

+ What are the variables in the Reduced Order Models? Whether that be auto-encoders, U-nets, DQNs, or GPTs.

+ Our brain comes hardwired for the deep convolutional network. Why do we spend $10s millions to learn it on a case-by-
case basis? What is this deep convolutional or functional transformation doing?

+ What is Q learning, that is what is Q? What flow is a generator generating, that is what transformation is generating the
data?

+ |s Artificial Intelligence related to the topology and geometry of the system’s dynamical manifold?
+ |s there a physical justification for ReLU?
+ Why is the logarithm so important?

+ |s there an equivalent of ponderomotive stabilization in Deep Reinforcement Learning?

e About Quantum Field Theory:

+ Why can only a few simple cases be renormalized and solved via the path integral approach to QFT? What is
renormalization doing?

+ Why can gravitation and nonlinear dynamics be described as geodesic motion (minimum distance or action path) on a
finite dimensional space, but QFT is described in a un-reconcilable statistical nature on a Hilbert space?

+ What are the Born Rule, Heisenberg’s Uncertainty Principle, and First and Second Quantization really telling us?

+ There is no reality, really?
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The academic foundation on which this work Is based w

e mathematical foundations in:
+ Spivak’s “Calculus on Manifolds”, as sophomore undergraduate

+ AJ Lohwater’s geometric perspective on complex analysis, that is the equivalency of an analytic
function and the topology of its Riemann manifold, as sophomore undergraduate

+ studies on topological helicity invariants, as a graduate student under Michael Freedman

+ studies on Geometry of Physics, as a graduate student under Ted Frankel

e physics foundations in collective behavior:

+ studies on nonlinear dynamics and plasma physics from a canonical transformation perspective and
Mayer Cluster Expansion perspective, as a UCSD graduate student under Tom O’Nell

+ studies on fundamental approach to plasma physics, as a graduate student under Marshall Rosenbluth
+ studies on statistical mechanics, as a graduate student under Duncan Haldane

+ studies on quantum field theory, as a adjunct faculty member at UWA under lan McArthur
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Let us turn the shell over and examine field theory from a
Nnew perspective — the bottom up

e From the top down, the traditional Quantum Field Theory perspective,
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+ deeply convoluted fields, from an infinite dimensional Hilbert space of
flelds — the motion of the collective

+ fundamental singularities spewed everywhere

» need to be consolidated by identifying fixed point and collecting
the singularities by solving the Renormalization Group Equations for
the “spectrums”

+ probability has a non-trivial distribution found by solving the
Schrodinger Equation

 From the bottom up, the approach of plasma (collective) physics, deeply de-
convolute the problem to the primal “spectral” domain of the individual
where:

+ dimension is a small number

+ partial differential equations have been reduced to an algebraic
expression (the analytic Hamiltonian), capturing the Lie group
symmetries of the individual

+ singularities (of the analytic Hamiltonian) have been reduced to a few
algebraic structures, capturing the geometry and topology of the
dynamical manifold of the individual

+ probability is trivially distributed (Qs are uniformly distributed over 2m)
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The geodesic puppet master of the collective

force
HJB .
Sp(q) = In pg(x) = Vy(s)
generators DRL W — 0
canonical flow generating function H ( e e
Heisenberg Scattering Transformation = action = entropy :
collective canonical flow generating functional . Qis o
- Immaovaple
geodesics ot B
mi(z), fi(@)]
puppet master viewed individual
via a “hall of mirrors” 0S(P, E;q, T
(pis q:) ( 7(9 4:7) - H(0S/0q,q)—v S =0
T
Neural (HST) Operator (propagator or HJB) : : :
Generative (HJB) Pretrglirned Transformer (HST) dm H ( /8) Hamilton-Jacobi-Bellman equation
r '
Generative (HJB) Adversarial Network (HST) Bi(2)) = = 5" (thatis, HST=HJB) Reduced Order Model (PE;Q,T
Deep (HST) Q (HJB) Learning d /B:Lrn




Mayer Cluster Expansion of collective systems or HST or w
Heisenberg’s S-matrix or m-Body Scattering Cross Sections
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Splf(x)

wpz *

=P

In Ry —{ Yp,*

P> ln R() — ¢p4*

o0
P — me
m=1

Pm+1 < Pm

Heisenberg Scattering Transformation (HST)
a logarithmic or canonical generating functional

(Wick path ordering)

In Ry < ""_’wpm*-VlnRo—}

Ox

™m

In(z) =In|z| +1i arg (2)
In(Ry(2)) > 2

| z|—0

Glinsky and Maupin, Computational Mechanics 72, 291,
arXiv:2302.10243 (2023)
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Neural Network architecture to solve HJB for the
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@ MLP Po(po, 20) B Ep(Pp) ) wo = 8E;}()Po) ‘_EI p_ le P, MLP (P, Q)
0
qo = TP
E YIS W (qo, Po)[ 1 Qo = 3ngg(; Py) —ZI Q = wo dT + Qg q(P, Q)
decoder
SP ( q ) ~| o 5Wg1;0, ) (g0, Fo) wW(Q;p)
E po |— 0% WQ(pOaQO)—l_) o od
encoder m G e ~“a ealte,
Ep(P) or H or @ IE Wpe(p, q)|=Q-function of state and }
—> or action with P-label
W(q,P) (0) [q] Ep(p,q)

[Ex(P)

Glinsky and Sievert, to be submitted to Journal of
Economic Affairs, arXiv:2310.04986 (2023)


https://arxiv.org/abs/2310.04986
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Topological discovery of dynamical systems: “the
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ensetmble of deep single system or S-matrix Lie 9:"_”"
iYSI:/'HS_gr deconvolution expansion or Mayer cluster decoder symme :lesgi)r
'3 l_" expansion gfom? ry
omain . opology
HST+PCA MLP with -
[7T,L- (f), fz (Qj)] | using local harmonic Wavelgt basis ‘52 (Z)> = sz - Rel_U - H(/B) or /6
or local coherent stgtes, with fast with encoder/decoder
motion on T M™" forward andi inverse geodesic motion on C" structure analytic function that
(cotangent bundle) with governed by Cauchy specifies geodesics and
symplectic metric dz~df Riemann equations, adjoints, equivalently the
and H[z(x), Aix) ] equivalently the topollogy of the
governed by Hamilton’s dimension and basis _ _ dynamical manitold
equations v;ctors (Slcl)luttllons éo the p °§ p 53 ~ote: the S-matrix o
SHOTTISZALOnN Srotp (Bo; T) (P.Q: E) (8) complex curvature is
Equations) of the A m
dynamical manifold e auation S d"H (5 )
. encoder decoder m
Re(H(B; = pi +iq¢;)) = H(pi, ;) agm
collective individual H(5)
i), fi(@)] > (D3, i) | > (P, Q;) Neural (HST) Operator (propagator or HJB)
HST HJB — or L2 e
Splf ()] Sp(q) =Inpg(x) = Va(s) | Generative (HJB) Pretrained Transformer (HST) o
generators DRL |
note: HST=HJB canonical flow generator = action = entropy
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the evolution of the evolution of
THE individual the collective
pick-a-Hamiltonian find-the-p* find-the-perspective find-the-field
H(pi,q;) = Re(H(B)) Im(H(S)) or H(B) Bi(2)) = dmH(B) _ gm IPCA + IHST
(that is, pick - - ap;" ing S Droi >
, pick a group HJB ¢ (that is, project and
symmetry, or (that is, solve the HJB (that is, that solve for the deeply convolve to
conserved quantity) equation with MLP+RelU, or S-matrix, or Mayer cluster field/fluid domain, or
the motion of the individual) expansion) the motion of the
collective)




Heisenberg Scattering Transformation (HST) — logarithmic
generating functional of the complex Hamiltonian

A
1 d7p

z| dH

Im(z2)

+0 +J

zp()

dzp = dz| +1idzy

Taylor expand H(z)

Z —Sm(20) (2 — 20)"

™ (= S-matrix)

define the convolutional wavelet transform

G

and consider the analytic trajectory

f(x —2")da’

2p(@) = Ypx Hin—1(2(2)) H,, =i
take the covector along this trajectory = 1
dzp So that

change to radial coordinates Heisenberg Scattering Transformation

20 = ol arg(zp)

6
2=z, — 2 = Je

rotate by 11/2 to get the covector
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with the definition
Ro(z) =z +
get the recursion relation
Inz =1In(Ro(2p))
1 In RO wpm * Hm—l-

ei arg(z)

m

Hp[f(2)](2) = dpa (H 1n Rop,

k=0

*) 1ln R()f(.fl?),

In(z) =1In|z| +1i arg(2)

In(Rp(2)) II——>0> 2

—— In |2

d
dH,, ()_1%—1( -
2| E

.(dJ
=1
J

| i@) — id(In(Je'%))
=id(lnz) =d(iInz).

2| =00

|z |—>oo

N Z |Z‘ eik arg (z)
k=0

— |2|
n=0

(log(MST) MHD example)

i In|s| e a2/ Il

(Wavelet Phase Harmonics)

(Mallat Scattering Transformation, MST)

similar to RelLU
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MLP solves Hamilton-dacobi (Bellman) or Laplace
equation for time invariant coordinates or geodesics

H=E®AdE) = H® Ad(H) = H® dH

E=idE H(B)

Qe

. |
: i

(Bo; T) (P,Q; E) (B) “'
)
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~ 8n

2n + 1
~ 8n
2n

solution to

Hamilton-Jacobi Ad(E) = i* d(i7) = d
equation H(B) = FE + iwt = Ep(P) +iQ
encoder decoder group parameter = 7 + iF /w

d(wt) = idFE (Cauchy-Riemann or Hamilton’s equations)

H(B)=(B+1/8)/2=(B+1)(B—1)/20

0S(q,t 05(q,1
(¢:1) :H( (4 ),q,t> =0 (Hamilton-Jacobi Equation)

ot Jq n=mng =1
two sheeted Riemann surface or manifold
oV i(q,t oV i(q,t
é’z - gg )f(c‘?V(q,t)/aq, q,t) +C(9V(¢q,1)/0q,q,t) = 0 with branch cut between -1 and 1

(Hamilton-Jacobi-Belman Equation) ~ « = /& —dHndr =dh=dmdf = Hdr) =2dr ndH

S(q,t) = action functional = generating function of canonical coordinate transformation
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Neural Network architecture to solve HJB

dE]
— propagator
|: dE
D0 MLP) Po(po,Qo) MLF; EP(PO) J wQ _ 8EP(P()) P — | P() MLP) p(P, Q)
oF wQ
[0 oW (g0, P o= [P
I do, Lo = wo dT + q(P, Q)
decoder
8W qo, PO
ﬂ| o= (8% ) = 7(qo, Po) w(Q,p)
dT - encoder wa (D0, 0
|: | ) —lnﬁ’ Foy(wg, Q) dE = wg Fext(wg, Q) dr
encoder 0 o, a0
dr
W p(p, q)|=Q-function of state and
5®) o pi(g) or Dloln o LEOlgim
W(qa P) E Ep (p, q) Glinsky and Sievert, to be submitted to Journal of

Ep(P) Economic Affairs, arXiv:2310.04986 (2023)


https://arxiv.org/abs/2310.04986

General surrogate MLDL architecture (generator)

HST VT W (qo, Po)
‘CO[T‘-OafO] ‘—> + |—>|co(po,q0) |—> —> —> —>

initial condition of PCA (HJB)

complex system

0p(D, q)

(complex system
propagation)
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predicted
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complex
system
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General MLDL architecture to control complex systems

j/ ' po.vvered by:
(Deep Reinforcement Learning) Y o
(optional)
HST MLP W (qo, Po)
‘ ]\43[7-‘-07]80”é + | mS(p07QO) —> —> (HJB) —> —>
measurement of PCA
complex system
AP FC(QO)
_ P
Ar {F;f“}’;’)) wap |_ 2 wLp
— sp — —_— . —_— fc(p7Q) —_> FC[T‘-7f]
(iIHJB) :
(complex system El appiied control
control force) complex
system

note: input measurement is not needed, if F,(7)

OR
Fsf(P) = —wss(P — P*) —epwqg(P) (feedback stabilization & cooling)

F., (1) = foe'“*" +wpep (ponderomotive stabilization & cooling)

(conservative control force)

(natural system evolution)
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http://qitech.biz/videos/phase_space.html
http://www.qitech.biz/papers_refereed/phys_plasmas_guiding_center_04.pdf
http://www.qitech.biz/papers_refereed/phys_plasma_3_body_91.pdf

Phase space dispersion

guiding center atom

NO0O0O0000000000000000DDOOO0DNNNC

o @O0000000000”
drifting pair

Glinsky and O’Neil, Phys. Fluids B 3, 1279 (1991)
Kuzmin, O’Neil and Glinsky, Phys. Plasmas 11, 2382 (2004)

guiding center atom
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H,/e = —1.6022

gitech.biz/videos/phase_space_2.html

Wo — 2.33
W1 — 2.03


https://youtu.be/YcYL6AWDAV8
http://qitech.biz/videos/phase_space_2.html
http://www.qitech.biz/papers_refereed/phys_plasmas_guiding_center_04.pdf
http://www.qitech.biz/papers_refereed/phys_plasma_3_body_91.pdf
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Ponderomotive stabilization of saddle point



https://www.youtube.com/watch?v=cjGqxF79ITI
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Topological and geometric manipulation for control

E(P) P -

2o
)j) ‘E‘.:
E(e")
m I EXCO
-
Coo
)}) ‘E‘.:
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What is Q learning”

~

Q(s,a;0) = Wi(q, P(p,q)) = Wp(p,q) = W(q,p; P)

-
action or Hamilton’s characteristic function or generating _Ig
function of canonical transformation solving HJB 8
~ [
Vis;0) =W(q, P
(55 0) (¢, P) 8
- oW (q, P
m(s;0) é ) m(q, P) =p
q
o— WP _ 0Q(s,0)
- oP 0

H(5)=H(P,Q)=Ep(P)+1Q
analytic continuation of the real Hamiltonian or
iImaginary part of the complex Hamiltonian

~~

) [ V= V) = W P = Vo)
oF T (s) =m(s;0") = awg]q’P ) = 7m(q, P*) = 7" (q)
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Parameters of MHD model of liner implosions (MagLIF)

z

. arg(p1) + arg(p2)/L
€T

%

.

W) &

WSS

N

W%z

\‘W’l /

Z

7T
m\“{\‘s

T
L =‘|‘\“‘

IzO

To = implosion adiabat = compression ratio
AR = w/Ry = liner aspect ratio = acceleration
A = magnitude of liner perturbation, fraction of thickness w

©vi;n = initial phase angle of m=n liner perturbation
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AR = 3.7, = 610 eV, A = 1%
z=000e+00cm,t=1.88e+02 ns z=000e+00cm,t=1.25e+02 ns z=000e+00cm, t=150e+02ns
0.100
0.3 0.04752 0.5358
| 1.993 ' 0.075 '
L 1.772 0.2 - 0.04224 - 0.4762
0.050
- 1.550 - 0.03696 - 0.4167
0.1
1329 0.03168 5 2025 0.3572 G
= g = v} o
S 1.107 £ S 0.0 0.02640 £  0.000 0.2976 £
> 0.886 : > o’ o
s86T 0021120 _ 15 0.2381 P
0.664 0.01584 0.1786
~0.050
0.443 —0.2 0.01056 0.1191
0.221 0.00528 0075 0.0595
~0.3
0.000 0.00000 —0.100 0.0000
-0.3 -0.2 -0.1 00 01 0.2 0.3 03 -02 -0.1 00 01 02 0.3 ~0.10 —0.05 0.00 0.05 0.10
X (cm) x (cm) X (cm)

M.E. Glinsky and K. Maupin, Computational Mechanics 72, 291 (2023)


https://youtu.be/GmIr3O5GLR0
https://arxiv.org/abs/2302.10243
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Z solution of Hamilton-Jacobi (Bellman)
equation, or Laplace’s equation, or geodesics
transform MLP /NN
AR
- mMcan
— —
D 1|25| |15] |25 7.p PCA| logloMST | log g e
/ \\ f“““"%% A
.’ ¥%  MLP/NN total score = 81%
T 4 O . PCA variance explained = 94%
0 = B 2670
2 O ‘ ey + ensemble of 539 simulations generating
s i 87,318 256x256 images taking 200k core*hrs
_ 7 -40 - - [/ - -
6o 62 o4 a5 08 10 12 L4 A ‘ . 0% + tralnlng took 16 GPU*hrs for MST, 2/(
permutation feature predicted vs. actual T D GPU*hrs for WPH, 1 core*sec PCA, 20
importance analysis Principle Component time t *
evolution “ % 57% core*sec MLP
s + surrogate (0.1 core*sec) accelerates a
‘ . 739% simulation (360 core*hrs) by a factor of 107




ncluding phase with Wavelet Phase Harmonics (WWPH) to
enerate correlated fields
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Physical interpretation of results — Inverse cascade Into
dipole (m=2) self organized state or emergent behavior

MST 1( PCA #4 )

MST 2( PCA #4 )

MST 1( PCA #5 )

PCA value
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80 - AR=3.0, T=10 eV, DL=1%
== MLP, AR=3.0, T=10 eV, DL=1%
AR=6.0, T=10 eV, DL=1%
meee MLP, AR=6.0, T=10 eV, DL=1%
60 B AR=9.0, T=10 eV, DL=1%

e MLP, AR=9.0, T=10 eV, DL=1%
AR=3.0, T=631 eV, DL=1% ‘
40 4 — MLP. AR=3.0, T=631 eV, DL=1%
AR=6.0, T=631 eV, DL=1%

we= MLP, AR=6.0, T=631 eV, DL=1%
AR=9.0, T=631 eV, DL=1%

. 4
—20 -
—40 - i ———l
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liner_ratio
time
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phi2_imliner
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importance to MLP of input variable

200
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Conclusions — the topology of dynamical manifolds

e transformational method that is finding the time invariant coordinates (P,Q;E(P)) that are the solution to the Hamilton-Jacobi equation
+ Reduced Order Model (ROM) of Artificial Intelligence (Al)
+ what Generative Pre-educated Transformers (GPTs) are learning
+ what Deep Reinforcement Learning (DRL) is learning, based on Hamilton-Jacobi-Bellman Equation

+ what the HST(deep deconvolution)/PCA/MLP(decoder) computational pipeline is finding:
» primally, The Golden Rule of collective behavior and philosophy — understanding the global consequences of local actions — knowing the path of least action

» “the collective acts as one”, “a rising tide floats all ships”, “tous pour un, un pour tous”, “do unto others as you would have them do unto you”

» the essence of well educated intelligence — the ability to think critically, that is strategically (example, play the beautiful Brazilian game of football)
 contrasted to trained stupidity — reflexive action (example, maximize website hits without regard to the consequences)

» The Inherent Goodness of Well Educated Intelligence
» direct and computationally efficient

+ geodesics of the motion (minimum action paths)
+ analytic function H(B) that is solution to Laplace’s Equation, Lie group symmetries

+ topology of low dimensional dynamical manifold 3*, that is topological discovery
* HST has physical meaning and interpretation, finds solution to Renormalization Group Equations (+PCA), extrapolates, supports causal analysis

e HST is a excellent metric, that exposes the:
+ dynamical manifold and its group symmetries * HST/PCA/MLP enables topological identification of fields in:

+ fundamental geometrical objects or relaxed states or topology, which are: + physics
» ground states of Quantum Field Theory (QFT) i i

| | . | + complex systems and nonlinear dynamics

» attractive manifolds of nonlinear dynamics

» emergent behaviors and self organizations of complex systems + economics and finance

» Taylor relaxed states and BGK modes of plasma physics

+ Artificial Intelligence (Al)

» poles and branch cuts of control theory and complex analysis
» homology classes of topology
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BACKUP SLIDES

Further information



Heisenberg’s S-matrix

The concept of the S-matrix was first introduced by
Werner Heisenberg in 1943 [8]. He lost interest in it,
most likely, because he lacked concepts of analyticity. It
was picked up again by Chew and Low [9] in 1955 and
was most completely developed by Lev Landau [10] and
Richard Cutkosky [11] by 1960. A good survey of this
work was written by Chew [12]. This work was based on
the concepts of analyticity and unitarity. It further used
the expansion of an exponential generator employed by
Richard Feynman in the path integral approach to quan-
tum field theory. Furthermore, it evaluated the resulting
integrals using a Fourier basis. It had no physical ba-
sis for the analyticity. Because of this, the theory was
incomplete and did not form a well defined theoretical
structure. It was also very difhicult to calculate, and was
not evaluated past second order. This line of research
was abandoned in favor of the path integral formulation.

The work presented in this paper addresses these de-
ficiencies. First, analyticity is the key to this work and
has a deep physical basis coming from the isomorphism
between Hamilton’s equations and the Cauchy-Riemann
equations. There is no need to enforce unitarity, since
analyticity leads to unitarity. The exponential generator
is replaced by a logarithmic generator so that the dy-
namics are constrained to a linear subspace. A wavelet
basis with local support is used in place of the Fourier
basis so that the integrals do not suffer from infinities,
more simply said, they are compatible with the evalu-
ation of integrals on manifolds. The analytic function
H () specifies the topology of the dynamical manifold.

Relationship to S-matrix and Wigner-Weyl transform

Wigner-Weyl transform

This work is also closely related to the Wigner-Weyl
transformation [13-15]. They wanted to transform from
the cotangent bundle to R™, then solve an ODE. The
problems were they: (1) used a global Fourier basis, (2)
only calculated to second order, and (3) did not include
the logarithmic transform. This resulted in complicated
corrections to the commutator, divergences in the evalu-
ation, and an incomplete transformation.

The HST follows the basic philosophy of Eugene

Wigner and Hermann Weyl of transforming from the
cotangent bundle to C", but uses an orthogonal local
partition of unity based on coherent wavelet states to
evaluate the integrals on the dynamic manifold, and em-
beds the complex logarithm in the transformation so that
the dynamical manifold is aligned with C™, where n is the
number of fields. The beauty of the HST is that the ODE
is Laplaces’s equation (the Cauchy-Riemann equations)
and the dynamical motion is simply geodesic motion, like
for general relativity, given the topology of the dynami-
cal manifold. Dynamics and Quantum Field Theory has
been reduced to a matter of geometry — the geometry

of physics [16].
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Multi Layer P

erceptron (MLP) regression
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Support Vector Regression (SVR
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