US 20070276901A1

a2y Patent Application Publication (0 Pub. No.: US 2007/0276901 A1

a9y United States

Glinsky et al.

43) Pub. Date: Nov. 29, 2007

(54) METHOD AND SYSTEM FOR PROVIDING A
GRAPHICAL WORKBENCH ENVIRONMENT
WITH INTELLIGENT PLUG-INS

(75) Inventors: Michael Glinsky, Houston, TX
(US); Gilbert Hansen, Plano, TX

Us)

Correspondence Address:
ANDREWS KURTH LLP

1350 I STREET, N.W., SUITE 1100
WASHINGTON, DC 20005

(73) Assignee: BHP Billiton Innovation Pty Ltd.

(21) Appl. No.:  11/439,111

Publication Classification

(51) Int. CL

GOGF 15/16 (2006.01)
(52) US.Cl oo 709/203; 709/201
(57) ABSTRACT

An apparatus and a method for analysis of point-gathered
data. The apparatus and method provide a platform that
includes a workbench providing a graphical working envi-
ronment for a user to view and perform operations on
point-gathered data and to interact with the platform, one or
more plug-ins that operate on the point-gathered data,
including plug-ins that receive inputs from a user through
workbench and issue commands as messages and that
actively save their state by passing the state as a message,
and a message framework that receives all messages from
producer plug-ins and passes the messages to an intended
consumer. The platform actively saves the workbench state
and plug-in states as messages passed to the message

(22) Filed: May 23, 2006 framework.
10
Client-Side Client-Side Client-Side Client-Side Client-Side
Component Component Component Component Component
16 16 16 16 16
A
Message Framework
20 12
14
Server-Side Server-Side
Component Component
18 18




US 2007/0276901 A1

Nov. 29,2007 Sheet 1 of 9

| "Old

8l 8l
Jusuodwo) Jusuodwo)
epIS-IanIaS apIS-1aM8s
14
Zl 0¢
yJomawel{ abessa|y
o] % ol ol 9l ol
jusuodwon Jusuodwon auodwon Jusuodwon jusuodwod
9pIS-u9lD opig-jusi) apIS-jusiy opig-juslD 9pIS-udlD

Patent Application Publication




US 2007/0276901 A1

Nov. 29,2007 Sheet 2 of 9

Patent Application Publication

¢ Ol

or

89IAIag
2109)/|E10IBWWOYD

8l > I
sobessapy JaBeueyy Buibessapy A
|
«-EP . .
A|II|
Ejep/pwo Jayojedsiq 19|M8S
¥1 Jones
8¢ _ ZL e

walsAs

8¢

oc

144

jusuodwon

lepuewwonyas
210D/|BI018WWo)

i
Jojoauuo) Jaysjedsig

- 9¢

-=n Jayojedsiq
obessaly

20InBg
2l07/|eIIaWWo)

°T4

4%

8107)/|e10IaWWOo)

Japuewwon

[44



US 2007/0276901 A1

Nov. 29,2007 Sheet 3 of 9

Patent Application Publication

- o — — — —— — e Al ML S M SR S M R Sem e e A MM S M G S M m S M e M e e M W WS G R R G e e e e e e G G . S S S e M M SR Em Em R e T e

¢l

1 4%
Jebeueyy siels

12>
Jayojedsiq

A4
labeuep

YOUSg)JOAN

abessay

|
|
|
[
|
|
|

A%




US 2007/0276901 A1

8S

09

stewapon (] -
suopag-ssa2 @poK (] -1
sdew wary (]
SUONIRS-S$AI) BBAT C
coey nwsis

4 SUONIAS-$501T WIS G ~
[ iswsanrsfspeoseafsuslosiu/ 6w awoy/ 71

Nov. 29,2007 Sheet 4 of 9

06

Of 1D tamsa- (] -
0z o39nq wesan- [}
az aHg uewan- (] -
UDHRALII( iatBARG uBnid- G “
autAByiag wisma- (]
uopzeaxg apndury uonid- (J -
$13584E3 AR ISBIS133f04JID/ 601/ dwWoy/ TTH

ARl AN SuIuddwo” .5:5&5%1)
A gapom o ¢ . Y58 QS 26

12

AR

Pawons

Tlayo

Patent Application Publication



US 2007/0276901 A1

Nov. 29,2007 Sheet 5 of 9

Patent Application Publication

st § G Egh # Jo

i
i
|
i
i

\

#]

i ’ . x g widan O3

Bl kihey Yo 4 h
wrw s 33
i woaiarted ey
Gl el o ! 1% Rt
o e g o T ] vk iy e (3
—-&1!.,“ —ng ;-..U ness :@t.un.ﬂwﬂz.\ﬁ%ulﬁ:ﬁ-vavnﬂ
et
tfiswﬁ«uﬂﬂﬂ.ﬂﬂk
%% B
54
\ . .
b b
N ST
PR Ty e .
¥ S SNty v Brin ; [ e m!.}t?{x‘l.ém WL ] ey
{7 ey e s g Wrwy OO A AL o)
[ Vi o1 coria g ot - . ,
o VR S R e ey Wi i

snng g AR XTI

{7 i e gise | DT LN -

- | Whvwssignautasatibl LTINS
TIGIE Y ATW PO e ECHAITE O e gy o F
PTG TSR SO ARONEY
P —
it g s 1 e
ey T e ey
\ g i {7 i i
3 J .
H— [




Patent Application Publication

72

76

78

82

84

88

90

92

94

START

Defautt
Server?

Connect to

Nov. 29,2007 Sheet 6 of 9

Receive Server
Selection

T4

Default/
Selected Server

Default
Project?

Yes

Open Default/
Selected

Receive Project
Selection

A0

Project

Default
Workbench?

Restore Default/Saved
Workbench or Open
New Workbench

Suspended
Workbench?,

Go to FIG. 8 When
Component Selected

Start Up
TN Message [
Framework
Workbench Workbench Manager 02
TN Manager 06 98 Waits for User _’)
Registers ) Selection
. Workbench
Message Dispatcher Scan for Populate and 00
™ Requests Available W=  Available  |—» Man;;g:ar“:gﬂeuests - Display ——")
Care Components Components Components Waoarkbench GUI

FIG. 5

US 2007/0276901 A1



Patent Application Publication

110
\ Launch
Component
112
\ Register
" Launched
Component
14| Y
N Operate 70
Component
116 +
\ Request
Service Perform
Job
‘ Restore ___’) 46
Workbench
18 |
. Request Self- +
Commander Perform
Operation Terminate 44
* Workbench
120 \ Request State i
Manager to Save _—) 42
Component State Instruct Saving
of Workbench -
* State
122
\ Request + / 40
Component State
" Request State
Information Information of All
+ Components
124 A
Instruct Saving 38
\‘ of Compaonent Receive —’)
State Workbench
Save Request
126 } *
~ Teminate Requestand | 436
Component 130
\ 1 32 Sta+tus
128 * Retri)eve
\ Continue Job After Request
Saved
Component  —P» Component [l Coma;:nent c : rﬁs?[:: nt L 134
Termination Restoration State P

Nov. 29,2007 Sheet 7 of 9

FIG. 6

US 2007/0276901 A1



Patent Application Publication  Nov. 29,2007 Sheet 8 of 9 US 2007/0276901 A1

START

Component Issues 152
Message

Y 1

Place Message

154 ——— onMessage
Dispatcher

Queue 158

!

156 Determine
Y Consumer for

Message

o

160

Route Per /
Routing

Instructions

162 -
Server-Side? Serialize | 164
Message

166

Special
Routing?

\ Pass Message to

Consumer(s)

l

168 Consumer
\ Generates
Response

!

\ Return
Response
Message

FIG. 7



US 2007/0276901 A1

Nov. 29,2007 Sheet 9 of 9

Patent Application Publication

N I8AlBg
! e
“ 14"
!
(474
T 801A8p
Aeidsip indino
_7
0gZ (44
AY
21N
Jossasosd ndul
4
9¢e
Jones
jeswoy
sjusuodwoo——_ |
apis-janIas
ebeio)s
Asepucoes Aowsw
J 7
vez eee
JaNBS
(
14"

8l

8 Old

002

(YR
/ i
<l !
;
r4 ¥4
201A9p A 20IA0p
Ke|dsip ndino
N~
cLe 802
AN
a0IAep
Jossaooid ndul
N
N\ J1asmoiq
yomowey |
affiesssw
sjusuodwoo—_ |
apis-jusipo
obeliols
AUEpU0oDs Kowaw
N \
014 20
QUIYOBN JosN
\
zl

114

9



US 2007/0276901 Al

METHOD AND SYSTEM FOR PROVIDING A
GRAPHICAL WORKBENCH ENVIRONMENT
WITH INTELLIGENT PLUG-INS

BACKGROUND

[0001] Numerous computer applications exist for provid-
ing users with a desktop environment for remotely connect-
ing to and working in a networked computing system. Such
networked computing systems may be a workplace, school,
business, etc., networked computing system that a user may
want to remotely connect to in order to, for example,
tele-commute. One known example of such a computer
application is Citrix™. However, such computer applica-
tions, including Citrix, may be generally characterized as
“lite-client.” Lite-client computer applications keep as much
functionality and processing on the server-side rather than
the client-side (i.e., the user machine). These computer
applications do not centralize operations on the client-side
and do not have their “brain” on the client-side. Further-
more, such computer applications tend to provide only basic
client-side graphic rendering.

[0002] Additionally, computer applications and networked
computing systems exist that automatically connect to serv-
ers and download applications on a client. For example, U.S.
Pat. No. 6,854,009 (“the *009 patent™) describes a system for
providing voice-over-internet-protocol (VoIP) systems. The
009 patent describes a networked computing system that
has a plurality of servers and a plurality of distributed
clients. Each client has a boot operating system (OS) that
automatically initiates a connection to one of the servers
upon startup. The server automatically downloads a base OS
and configures a suite of applications on the client.

[0003] However, like the Citrix application and other
applications and systems, the system described by the *009
patent does not provide or include intelligent components
that save their state as part of an active state-saving mecha-
nism. These systems do not support intelligent, user-built
and third-party-built, custom components. These systems do
not provide a graphical environment with intelligent and
inter-communicating components that may actively drive
services and other components. These systems do not pro-
vide an extensible environment or workbench that supports
multiple active virtual desktops. Further, these systems tend
to be event-driven rather than utilizing a message-based
architecture. Moreover, as above, these systems may be
generally characterized as “light-client,” maintaining a
greater degree of functionality and processing remotely on a
server rather than locally on a client.

SUMMARY

[0004] An advantage of the embodiments described herein
is that they overcome the disadvantages of the prior art.
Another advantage of embodiments described herein is they
provide a user-friendly, graphical web-based workbench
environment with intelligent components that are activated
on a client when a user connects to a remote server. The
components in such embodiments are intelligent in that they
include state-saving, state-restoring and message passing
capabilities. Another advantage of embodiments described
herein is that they support multiple active virtual desktops in
a message-driven, extensible environment or workbench.

Nov. 29, 2007

Another advantage of embodiments described herein is that
they enable user-built, third-party-built custom components.
Yet another advantage of embodiments described herein is
that they are heavy-client, centralizing their functionality
and processing on a client rather than a server.

[0005] These advantages and others may be achieved by a
platform for analysis of data. The platform includes a
workbench providing a graphical working environment for
auser to view and perform operations on point-gathered data
and to interact with the platform, one or more plug-ins that
operate on the point-gathered data, including plug-ins that
receive inputs from a user through workbench and issue
commands as messages and that actively save their state by
passing the state as a message, and a message framework
that receives all messages from producer plug-ins and passes
the messages to an intended consumer. The platform actively
saves the workbench state and plug-in states as messages
passed to the message framework.

[0006] These advantages and others may be achieved by a
system for providing a graphical web-based environment for
performing operations on data. The system includes a client
operating on a user machine and a server. The client includes
a workbench that provides a graphical working environment
for a user to interact with and operate a plurality of com-
ponents operating in the workbench, and message frame-
work. The components include one or more commanders
that analyze and perform operations on data, one or more
self-commanders and one or more client-side services (and/
or server-side services) that perform services per com-
mander or self-commander issued commands and issues
responses to the commands. Each commander includes
state-saving, state-restoring and message passing capabili-
ties, receives inputs from the user through the workbench,
issues commands and receives responses. Self-commanders
receive inputs from the user through the workbench, issue
and receive commands, and issue and receive responses. The
components communicate with each other using messages
passed through the message framework. Each message is
passed through the message framework and includes data or
data and a command. The server stores information regard-
ing the components, including the state and identity of
available components.

[0007] These and other advantages are also achieved by a
method for providing a graphical web-based environment
for performing operations on data. The method includes
connecting to a server from a client computer, opening a
workbench on the client computer, starting up a message
framework, launching one or more commander components
on the client computer, launching one or more self-com-
manders on the client computer and saving the state of at
least one of the commander components on the server. These
advantages and others are also achieved by a computer
readable medium that includes instructions for executing
this method.

DESCRIPTION OF THE DRAWINGS

[0008] The detailed description will refer to the following
drawings, wherein like numerals refer to like elements, and
wherein:

[0009] FIG. 1 is a block diagram illustrating an exemplary
architecture of system for providing a graphical web-based
environment with intelligent plug-ins according to an
embodiment;



US 2007/0276901 Al

[0010] FIG. 2 is a more detailed block diagram illustrating
an exemplary architecture of system for providing a graphi-
cal web-based environment with intelligent plug-ins accord-
ing to an embodiment;

[0011] FIG. 3 is a block diagram illustrating an exemplary
architecture of exemplary system components;

[0012] FIG. 4A is a screen shot of an exemplary virtual
desktop according to an embodiment of system for provid-
ing a graphical web-based environment with intelligent
plug-ins;

[0013] FIG. 4B is a screen shot of an exemplary virtual
desktop according to an embodiment of system for provid-
ing a graphical web-based environment with intelligent
plug-ins displayed;

[0014] FIG. 5 is a flowchart illustrating an exemplary
method for providing a graphical web-based environment
with intelligent plug-ins;

[0015] FIG. 6 is a flowchart illustrating an exemplary
method for providing a graphical web-based environment
with intelligent plug-ins;

[0016] FIG. 7 is a flowchart illustrating exemplary mes-
sage passing in a graphical web-based environment with
intelligent plug-ins;

[0017] FIG. 8 is a block diagram illustrating exemplary
hardware components of a system for providing a graphical
web-based environment with intelligent plug-ins according
to an embodiment.

DETAILED DESCRIPTION

[0018] A method and system for providing a graphical
environment with intelligent plug-ins is described herein.
Embodiments include a component-based application with
an underlying message-driven framework that supports mul-
tiple virtual desktops. Each instance of a virtual desktop may
be referred to herein as a “workbench” and the component-
based application may be referred to herein as “workbench
application” or simply the “application.” Each active desk-
top may have multiple intercommunicating components
active at once. The components include two capabilities,
namely message passing and saving/restoring of the com-
ponent’s computational state. Embodiments of the work-
bench include components that send commands to other
components and receive responses, components that send
and receive commands, process commands, and receive and
send responses, and components that receive commands,
process the commands and send responses. The components
may receive virtually any kind of data as input, run various
computational algorithms on the data and produce output
that is consumed by other components and also, for
example, displayed to a user. In embodiments, the compo-
nent-based application is a web-based application that is
downloaded from a server to a user machine on which it is
installed and run/executed. The application may be a “client-
heavy” or “thick client” application because the compo-
nents, particularly the command-issuing components, run
predominantly on the client and not on the server.

[0019] With reference now to FIG. 1, shown is a block
diagram providing a general overview or architecture of
computer system 10 for providing a graphical web-based
environment with intelligent plug-ins according to an
embodiment. In an embodiment, system 10 may be accessed
and run by a user downloading (or otherwise obtaining),
installing and running the component-based application
described above on their user-machine (client 12).

Nov. 29, 2007

[0020] Generally speaking, components of system 10 are
plug-ins. A plug-in is software (e.g., a module or applica-
tion) that issues or receives commands to perform certain
enumerated operations; new plug-ins may be added to or
“plugged-into” system 10 by integrating the plug-in into an
exposed application program interface (API) (e.g., message
framework) of system 10. New plug-ins extend capabilities
of system 10 (“extend the system™). As is discussed herein,
the component-based application running on user machine
may detect and instantiate the plug-ins as requested by user.
The graphical web-based environment is referred to as a
workbench. In embodiments described herein, the work-
bench is a virtual desktop that appears as a window on the
user-machine (client); system 10 is a virtual operating sys-
tem (OS) for the workbench. The architecture of system 10
defines a component-based application with an underlying
message-driven framework that supports multiple virtual
desktops. Each desktop may have multiple intercommuni-
cating components active simultaneously.

[0021] As shown, the system 10 includes client 12 (side)
and server 14 (side). The client 12 and server 14 shown are
exemplary and are shown for illustrative purposes only. See
below for detailed description of exemplary client 12 and
server 14. Other configurations of client 12 and server 14 are
encompassed. For example, there may be more than one
server 14 in an implementation of system 10. A back-up
server 14 may be provided.

[0022] Client 12 is a local user machine. Client 12 may be
any local user machine on which a user installs and runs the
application. System 10 is preferably implemented using
Java, such as Java 5.0, although other programming lan-
guages may be used. Embodiments include a Java Runtime
Environment (JRE), such as JRE 1.5, installed on client 12.
System 10 may operate in a variety of operating systems
installed and running on client 12, such as Microsoft Win-
dows (e.g., WinXP), Linux, Mac OS. Other applications are
installed and used as necessary, such as Seismic Unix (SU)
if using plug-ins that generate a SU script or Landmark
project environment if using Landmark reader and writer
services. Seismic Unix may be the format for sub-surface
data passed in system 10. Server 14 may be, e.g., a Tomcat
server, installed on a remote machine, or even a local user
machine. If system 10 is implemented in Java, it may work
in Java or a machine dependent language, such as C++,
through a Java Native Interface (JNI).

[0023] With continued reference to FIG. 1, system 10
includes client-side components 16, server-side components
18 and message framework 20 providing the message-
driven, intercommunication between the components. Mes-
sage framework 20 includes client-side elements and server-
side elements and is, therefore, illustrated spanning both
client 12 and server 14. System 10 is client-heavy or thick,
with a greater proportion of its components, and function-
ality, on client 12 rather than server 14. Client-side compo-
nents 16 are stored and executed on client 12. However, state
information is saved on and retrieved from server 14.
Consequently, a user may restore client-side components 16
to a saved state on any client 12 on which system 10 is
installed.

[0024] Message framework 20 supports multiple active,
intercommunicating components in a workbench. As men-
tioned above, workbenches are displays generated by system
10 that have a Windows desktop-type appearance and pro-
vide a user access to the components and functionality



US 2007/0276901 Al

provided by system 10. Each workbench may be displayed
as a window or other graphical-user-interface (GUI). Gen-
erally, workbenches are generated and displayed on client 12
when user invokes system 10 by connecting to server 14.
Further detail on the invocation of workbenches is provided
below.

[0025] As discussed above, client-side components 16 and
server-side components 18 are plug-ins. These plug-ins,
however, are intelligent in that they support two specific
capabilities—message passing and saving/restoring of their
computational state. The former capability enables client-
side components 16 and server-side components 18 to
intercommunicate through message framework 20. The
message passing capability includes the ability to send
messages that include commands and/or data, as described
below. In an embodiment, to support message passing, a
component includes a message handler and message queue.
The message queue temporarily stores outgoing and incom-
ing messages and the message handler manages the message
queue, adding and removing messages from the message
queue. The state saving/restoring capability enables the state
of each active workbench, and the components running
therein, to be saved and later restarted with the same
operational state. In embodiments, each component may
pass its state as a message sent through the message frame-
work for storing on server 14. A component state may
include the position of a component GUI in workbench
window and input parameters entered into said GUIL

[0026] In an embodiment, client-side components 16 and
server-side components 18 may include “core” components
(plug-ins) that are provided with each implementation of
system 10. In other words, the application that a user installs
and runs on the user machine may include a set of core
components. In an embodiment, each instance of the appli-
cation installed and run on a user machine will include the
core components. Additionally, commercial or custom com-
ponents (plug-ins) may be developed and added to an
implementation of system 10 by a user or third-party devel-
oper. For example, such commercial components may be
developed and provided by an entity other than the entity
providing the application and the core components. Com-
mercial components are components that are not provided
with the application when installed. Commercial compo-
nents may be written by any third-party. A user may install
and run the application and then download additional com-
mercial components for installation and operation in system
10. Such commercial components may be “plugged-in”
system 10. After the commercial components are installed
they may be recognized by the application. Commercial
components may extend and expand the functionality of
system 10. In an embodiment, system 10 is provided with
“core” components under an open-source license while
commercial components must be separately licensed and
purchased. Commercial components may be licensed or not,
open-source or not, purchased or free, etc.

[0027] With reference again to FIG. 1, in operation, sys-
tem 10 users interface with workbench, accessing client-side
components 16 through GUIs displayed on the workbench,
and requesting client-side components 16 perform certain
operations and display certain data. In turn, client-side
components 16 issue commands and perform the requested
operations. Client-side components 16 may issue commands
to other client-side components 16 and server-side compo-
nents 18. Client-side components 16 issuing commands may

Nov. 29, 2007

be referred to as producers. Components processing and
responding to commands may be referred to as consumers.

[0028] Responses to the commands (output) are generated
by consumer components and sent back to the requesting
producer client-side component 16 (component issuing
command) and/or other components. Responses to com-
mands may also include further commands sent to other
client-side components 16 and/or server-side components
18. The commands and responses are sent and received by
message framework 20 as messages. Message framework 20
receives messages from a producer component and routes to
the appropriate consumer component. If necessary to send to
a server-side component 18, message framework 20 may
serialize the message before transmitting to server 14.
Responses from server-side components 18 may be received
and de-serialized by message framework 20 before being
passed to the requesting component.

[0029] In an embodiment, client-side components 16 are
stored on client 12. Client-side components 16 may be, e.g.,
packaged as a file stored on client 12. For example, client-
side components 16 may be packaged as a Java Archive
Repository (a .jar or “JAR” file) saved on client 12 (e.g., in
a component or plug-in cache). The file includes code that
creates an instance of the component when launched and
registers the instance with message framework 20. Some
client-side components 16 include a graphical-user interface
(GUI) for interaction with the user. Such components would
also include code to instantiate the GUI and to receive and
process user inputs from the GUI. In an embodiment, every
component instance runs as a separate thread in system 10.

[0030] As mentioned above, system 10 may be used with
virtually any type of data. One embodiment described herein
manipulates and operates on sub-surface data, including
seismic and well log data, gathered from numerous sources.
Seismic data includes sub-surface data normally generated
or obtained from sound wave propagation through earth.
Such sound waves are typically low frequency (e.g., 1 to 100
Hertz). Seismic data may be generated or obtained by
looking at seismic reflections showing contrasts in sub-
surface material, e.g., as seen from compression data and
acoustic components in the propagating sound waves. Well
log data (or simply well data) includes data acquired through
a hole (well) drilled in the earth, usually expressed as a
function of distance (depth) in the well. Such data may be
gathered from devices and instruments in the well, from
samples taken from the well, and may include pressure,
sound and other data. Such data may also include data
gathered during drilling the well or from temporarily or
permanently down-hole (in the well) sensors and other
measuring devices. Such an embodiment may perform quan-
titative or qualitative interpretation, other analysis or pro-
cessing, of seismic and well data. Seismic data and well log
data are types of sub-surface data. Indeed, when referred to
herein, sub-surface data may refer to seismic data, well log
data, other related data, and/or derived data (e.g., data
derived from sub-surface data, reservoir models, reservoir
simulation models, geologic models, etc.). Other data sys-
tem 10 may be used with includes, for example, medical
imaging data, gaming data (e.g., from on-line or standalone
computer game applications), financial data, telecommuni-
cations data, military application data, security data, weather
data, etc. The data may be produced, generated, retrieved,
gathered, etc., by separate applications (e.g., web-based or
standalone) or by components of system 10. For example, in



US 2007/0276901 Al

a gaming embodiment, clients 12 may be separate gamers’
user machines and client-side components 16 may include
the gaming application installed on client 12. The state of a
gamer’s game session may be saved on server 14.

[0031] The data may be generated on or gathered by
computing devices separate from client 12 and server 14.
The data may be point-gathered (e.g., gathered at a particular
geographic or virtual point, such as, e.g., a seismic-data
gathering device, a well, a meter, a medical imaging device,
a telecommunication device (e.g., a switching center, base
station, wireless transmitter/receiver (e.g., mobile phone),
wired transmitter/receiver, fixer or mobile transmitter/re-
ceiver, land-line), a financial device (e.g., an automated-
teller machine, a computer performing electronic banking, a
financial institution computer, an automated trading network
or computer), a gaming machine (e.g., a user machine
running an on-line or standalone computer game, a server
running an on-line computer game), a sensor (e.g., radar,
sonar, imaging system, ladar, phased-array radar, synthetic
aperture radar, motion-sensor, infrared, pressure-sensor,
etc.), message notification system, military or security infor-
mation gathering equipment and devices, other data gather-
ing equipment and devices, computers, servers, and net-
works, etc.). The data may be actively or passively gathered.
[0032] The data may be communicated to and stored on
client 12 and/or server 14 via, e.g., the Internet or another
network. The data may be manually loaded onto client 12
and/or server 14. Alternatively, data may be stored on
storage devices remote from client 12 and/or server 14. Data
may be stored in large amounts (e.g., terabytes of data) on
server 14 (or other storage device) and subsets of the data
(e.g., megabytes or gigabytes) temporarily, or otherwise,
retrieved from server 14 (or other storage device) and stored
on client 12 for processing and operations performed by
client-side components 16 (such as, e.g., display and
manipulation through workbench). In some instances, it may
be necessary for a server-side component 18 to perform an
operation because the data for the operation is resident on
server 14 or elsewhere. Other instances include situations
when a computation is particularly intense and it requires
multiple server-side components 18 resident on multiple, or
a cluster or gird of, servers 14.

[0033] With reference again to FIG. 1, to summarize,
some important features of system 10 include:

[0034] Components are command driven. A component
receives/sends either a command and/or data, and
returns data. Commands and data are bundled in a
message. In embodiments, all messages go through
message framework 20, which handles message pass-
ing for all components. Message framework 20 may
execute commands contained in a message or direct the
message to a client-side component 16 or server-side
component 18 for execution. Return messages are
directed to the requesting originator component.

[0035] Client-side components 16 or server-side com-
ponents 18 are plug-ins that include two specific capa-
bilities, namely, message passing and saving/restoring
of computational state.

Additionally, commands with defined arguments can be
journaled into a script. Replaying this script can be used to
test system 10 or to restore system 10 to a past state. It is
possible to present a script file to the message framework 20
for execution. Other important features of system 10 are
apparent from the description above and as follows.

Nov. 29, 2007

[0036] With reference now to FIG. 2, shown is a block
diagram illustrating a more detailed, exemplary architecture
of an embodiment of system 10. As above, system 10
includes client-side components 16, server-side components
18 and message framework 20. As shown here, client-side
components 16 include one or more commanders 22, one or
more self-commanders 24, one or more client-side services
26 and one or more system components 28. Message frame-
work 20 includes messaging manager 32, message dis-
patcher 34, and dispatcher connector 36 on client 12, and
servlet dispatcher 38 and messaging manager 32 on server
14. Server-side components 18 include one or more server-
side services 40. Commanders 22 and other client-side
components 16 are resident and executed on client 12. In
alternative embodiments, commanders 22 and other com-
ponents may be resident and executed on server 14.

[0037]

[0038] Commanders 22 are intelligent components. As
with other components of system 10, commanders 22
include message passing and computational state saving/
restoring capabilities. Commanders 22 generally act as pro-
ducers, sending commands to other components and mes-
sage framework. Commanders 22 send requests (commands
with or without data) to other components (client-side
components 16 and server-side components 18) and receive
responses back. Some of the responses may include data
generated or retrieved by other components. The data may
be retrieved from client 12, server 14 or elsewhere. Com-
manders 22 may manipulate this data, perform operations,
including, e.g., computational algorithms, on the data, and
produce output that may be consumed by other components.
For example, self-commanders 24 may include viewers
which consume output from commanders 22 and display the
output on a display in the workbench for the user to view.
Commanders 22 include message handlers and message
queues as discussed above.

[0039] In embodiments, commanders 22 do not receive
commands from self-commanders 24 and services (client-
side services 26 or server-side services 40). The message
paths shown in FIG. 2, by showing outgoing commands/data
and incoming data to commanders 22, illustrate this para-
digm. An exception to this paradigm is that commanders 22
do receive and respond to commands from message dis-
patcher 32 and system components 28 (collectively referred
to as “system-level components™). All components, includ-
ing commanders 22, may receive commands from system-
level components.

[0040] Commanders 22 usually include a GUI through
which a user specifies input parameters and selects data for
operations performed by commanders 22. Typically, when
the user makes selections requesting commander 22 perform
some operation, the commander GUI enters into a dialog
with a user in order to determine what file or directory to use
for obtaining data, to set parameters for commander 22
operations, to determine what file or directory to write
results to, etc. Such dialogs may be common to other
client-side components 16 and, therefore, may be provided
as a separate client-side component 16 for other client-side
components 16, such as commanders 22 and self-command-
ers 24, to use. Some commanders 22, however, do not have
a GUI and may, for example, simply monitor and record
message traffic and take actions based on received messages
and/or drive other components.

Commanders



US 2007/0276901 Al

[0041] With continuing reference to FIG. 2, there are a
variety of forms commanders 22 may take. For example,
commanders 22 may be: (1) a monitor/report daemon, which
commands message framework 20 to feed the monitor
daemon the command stream received by message frame-
work 20 and which monitors and reports on the command
stream; (2) a monitor/act daemon that monitors commands
issued by another commander 22 or self-commander 24 and
takes some action when a particular command is issued. For
example, as discussed below, self-commanders 24 may
include viewers, including three-dimensional (3D) viewers
and two-dimensional (2D) viewers. Like commanders 22,
self-commanders 24 may include a GUI. A 3D viewer GUI
may issue a command to select and highlight a portion of
data displayed in the 3D viewer (e.g., in response to a user
input, such as clicking-and-dragging over a portion of the
display). The monitor/act daemon may be monitoring for
such a command, and when seen, the monitor/act daemon
may issue a command to the 2D viewer to select and
highlight a corresponding portion of data displayed in the
2D viewer. Other commands that may be monitored and
acted upon include such commands as “refresh all displays”
or “reload a layer”; (3) a recording daemon that records
commands to a script file (which may be later executed); (4)
a system backup daemon that, periodically or as scheduled,
tells messaging framework 20 to save the state of an active
virtual desktop; (5) a static command generator, which
presents another component (e.g., a self-commander 24 such
as a viewer) with a canned script of commands for execu-
tion. The static command generator may contain the canned
script or ask the user for a script file; (6) a dynamic
command generator that issues commands based on actions
taken by the user (e.g., actions taken by users in component
GUIs or on displays displayed by a self-commander 24).
Such a dynamic command generator commander 22 may
listen to commands from an active instance of self-com-
mander 24; and, (7) a workflow-wizard or other GUI that
receives commands from users in the form of user selections
and parameter inputs in the GUI displayed to the user in the
virtual desktop, performs operations on selected data (e.g.,
computational algorithms) and may issue commands to
other components in response thereto. The types of com-
manders 22 include the forms discussed herein, combina-
tions of those forms, and commanders 22 with other func-
tionality limited virtually only by a developer’s imagination
and compatibility with systems 10 (message passing and
computational state saving/restoring).

[0042] Workflow wizard commanders 22 may present a
workflow through a GUI to users. The workflow may be a
flowchart of various actions and operations performed by
workflow wizard commander 22 and/or various other com-
ponents, such as other commanders 22, self-commanders 24,
client-side services 26, and server-side services 40. The
workflow requests and receives input parameters from the
user. The workflow may instantiate components to perform
operations displayed in the workflow and selected by the
user. The received input parameters may include selections
of data for operations and parameters for computational
algorithms, for example. The received input parameters may
be provided to the instantiated components as input for the
operations. For example, a workflow wizard commander 22
may instruct a self-commander 24 (e.g., such as a viewer,
client-side service 26 or server-side service 40) to take

Nov. 29, 2007

certain actions in response to a user selection, via commands
(sent as messages through message framework 20).

[0043] The GUI workflow for a workflow wizard com-
mander 22 may be represented, for example, by a layout of
Java Swing™ interaction widgets displayed in the GUI
(non-workflow components may use Java Swing interaction
widgets). The layout specifies the flow of control—the
flowchart. Such widgets may include data widgets and
control widgets. Data widgets are for specifying options and
entering parameters to computational processes. The com-
putational processes may be performed by the workflow
wizard commander 22 or other components. Control widgets
are for issuing commands to components, such as self-
commanders 24 (e.g., commands to viewers to display
computational results).

[0044] Commander 22 GUIs displayed in a virtual desktop
may have a status area for displaying messages about the
progress of computational processes being executed by or
for commander 22. Some computational processes executed
for commander 22 may be executed by client-side service 26
or a server-side service 40. Exemplary statuses of a com-
mander’s 22 computational process include: the process
started, the process completed successfully, the process took
an exception, or the server the process was running on
crashed.

[0045] With continuing reference to FIG. 2, commanders
22 monitor and save their current state. As a result, com-
manders 22 may be suspended, i.e., the state of an instance
of a commander 22 saved and the commander 22 deacti-
vated/closed. Later, commander 22 may be reactivated to the
last saved state. Furthermore, while commander 22 is deac-
tivated, all responses (data) that commander 22 would have
received from server-side services 40 (or elsewhere) may be
saved. When commander 22 is reactivated to the last saved
state, commander 22 is sent all of the saved responses.
[0046] Ina sub-surface data embodiment, exemplary com-
manders 22 include but are not limited to an amplitude
extraction component (which provides amplitude extraction
from maps, events and seismic data), a delivery lite com-
ponent (which provides model-based inversion calculations
on model-based layers), a spectral decomposition compo-
nent (which provides spectral decomposition functions), a
wavelet extraction component (which extracts wavelets
from seismic data and from well logs), an XML editor
(which enables a user to edit, e.g., XML data files, structured
parameter files, input data files, hierarchical data files,
workflow files, etc. Such sub-surface data commanders 22
manipulate sub-surface data, e.g., process and/or analyze
seismic or well log data, perform computational algorithms
on the sub-surface data, instruct job services to perform
computations, produce sub-surface data output, produce
processed sub-surface data output, etc. The output produced
by sub-surface data commanders 22 may be consumed by
other components (e.g., by self-commanders 24, such as
viewers).

[0047] As discussed above, some commanders 22 may be
“core” components shipped with an implementation of sys-
tem 10 while other commanders 22 are “commercial” com-
ponents that are separately licensed and/or purchased. In an
embodiment, system 10 may be provided with core com-
manders 22 free-of-charge while commercial commanders
22 are provided by a third-party and may be separately
licensed and purchased or otherwise obtained (e.g., free of
charge, open-source licensed, etc.). For example, some



US 2007/0276901 Al

sub-surface data commanders 22 may be developed and
provided by various vendors for installation and use in
system 10.

[0048]

[0049] With reference again to FIG. 2, self-commanders
24 may send and receive requests (commands). This is
represented in the architecture diagram of FIG. 2 by two sets
of message arrows—one pair for sending commands, one
pair for receiving commands. Examples of self-commanders
24 include viewers that graphically render and display data.
Such viewers include, e.g., a 2D viewer and a 3D viewer. In
a sub-surface data embodiment, viewer self-commanders 24
display, e.g., graphically rendered seismic, horizon and well
data, maps, etc.

[0050] Self-commanders 24, such as viewers, may com-
municate with each other via message framework 20. In
other words, self-commanders 24 may send each other
messages. Indeed, self-commanders 24 may send commands
to other self-commanders 24 and themselves via message
framework 20. For example, an active 2D viewer may send
an active 3D viewer a command to synchronize the 3D
viewer cursor with movement of the 2D viewer cursor.
When a user moves the 2D viewer cursor, a synchronized 3D
viewer cursor will mimic the 2D viewer cursor movement.
Alternatively, a monitoring commander 22 may send a 3D
viewer self-commander 24 a command to synchronize upon
monitoring 2D viewer self-commander 24 synchronize com-
mand. Other viewer actions may also be synchronized.
Other commands may be passed between viewers for syn-
chronization and other purposes. Self-commanders 24 also
receive and respond to commands from system-level com-
ponents.

[0051] Moreover, viewer self-commanders 24 enable a
user to conduct multi-dimensional analysis. For example, a
user may view a 3D view of data displayed by a 3D viewer.
While viewing, the user may select a portion of the dis-
played data and request that a 2D viewer display the same
portion of data in a 2D view. The 3D viewer self-commander
24 may send a command message launching 2D viewer
self-commander 24, if not already active, and instructing it
to retrieve and display the selected portion of data in its 2D
display. The process may also be reversed, requesting a 3D
view of displayed 2D data.

[0052] With continuing reference to FIG. 2, as with com-
manders 22 above, self-commanders 24 may include a GUI
through which a user makes selections, enters input and
otherwise interfaces with self-commander 24. A viewer
self-commander 24 may include code for the GUI as well as
code to visualize the viewer display. For example, in an
embodiment, viewer self-commanders 24 include viewer
GUI agents and viewer visualizer services. Viewers control
their display (viewer visualizer service) through their GUIs
(viewer GUI agent). Messages may be passed from a self-
commander 24 GUI to the self-commander 24 visualizer.
These messages may contain commands and data for direct-
ing viewer visualizer service to display requested data. For
example, a user may select a certain portion of data dis-
played by a 2D viewer for a zooming. Viewer GUI agent
may receive data from other components for display and
may then send a message (including the data and com-
mands) to viewer visualizer service. Viewer GUI agent may
also receive input from a user requesting certain data be
displayed or certain services be performed.

Self-Commanders

Nov. 29, 2007

[0053] As mentioned above, self-commanders 24 may
include a 2D viewer and a 3D viewer. In certain (e.g.,
sub-surface data) embodiments, self-commanders 24 also
includes a well log viewer that displays well log views.
Exemplary viewers that may be configured as viewer self-
commanders 24, or upon which viewer self-commanders 24
may be based, include, e.g., bhpViewer, Interactive Petro-
physics™ viewer, Powerlog viewer, Landmark’s Seis-
Cube™ viewer, GeoQuest’s viewer. In certain embodi-
ments, when workbench is instantiated on client 12, no
particular viewer self-commander 24 is active by default.
However, the user can change “Preferences” to indicate a
default viewer. Self-commanders 24 may be launched
explicitly by the user or programmatically by another com-
ponent (including, e.g., another instance of self-commander
24 currently running). For example, a 3D viewer self-
commander 24 may launch (instantiate) a 2D viewer self-
commander 24 if a user requests a 2D view of selected data
displayed by 3D viewer. Likewise, commanders 22 may
launch self-commanders 24.

[0054] As with other components, self-commanders 24
support message passing and computational state saving/
restoring. Self-commanders 24 may be producers and con-
sumers. Self-commanders include message handlers and
message queues. Self-commanders 24 may be suspended,
i.e., the computational state saved and the self-commander
24 deactivated. While self-commander 24 is deactivated, all
commands and data self-commander 24 would have
received from other components are saved. When self-
commander 24 is reactivated to the last saved state, self-
commander 24 may be sent all of these commands and data.
A user may also specify which change commands it wants
an instance of self-commander 24 to broadcast to other
instances of self-commander 24 and other self-commanders
24, and which change commands it wants the instance of
self-commander 24 to listen for from other instances of
self-commander 24 and other self-commanders 24.

[0055]

[0056] With reference again to FIG. 2, client-side services
26 and server-side services 40 receive commands, process
the commands and sends back a response (e.g., data).
Services may receive commands from commanders 22,
self-commanders 24, message dispatcher 32 and system
components 28. Examples of client-side services 26 and
server-side services 40 are input-output (10) services, such
as a reader and writer for files (e.g., ASCII files and seismic
files in different formats (e.g., segy, Landmark, Petrel, etc.)),
and job services for executing and monitoring jobs gener-
ated by commanders 22 or self-commander 24 (e.g., to
perform calculations for commanders 22 or self-command-
ers 24). Client-side services 26 and server-side services 40,
generally speaking, are utilities that provide common opera-
tions that may be utilized by different commanders 22 and
self-commanders 24. Jobs may be a script (e.g., a Seismic
UNIX (SU) script) of one or more operations executed by
one or more client-side services 26 and/or one or more
server-side services 40. Jobs may be run in little time, e.g.,
micro-seconds or seconds, or may take substantial time, e.g.,
minutes, hours, days. Some jobs may require one or more
server-side services 40 for running jobs on a cluster of
servers or computers (which may or may not include server
14). Client-side services 26 and server-side services 40 may
assign each job and cluster job a unique job ID.

Services



US 2007/0276901 Al

[0057] The following exemplary client-side services 26
may be provided as part of an embodiment of system 10: a
reader to read a local file in a given format; a writer to write
a local file in a given format; a service to retrieve names of
files in a directory (e.g., on client 12); and, a job service to
start a local job and monitor the local job progress. Local
jobs typically are executed by one or more client-side
services 26 running on the user machine (client 12). In an
embodiment, an instance of a client-side service 26 can only
be started by a command from a commander 22 or self-
commander 24.

[0058] As with other components, client-side services 26
and server-side services 40 support message passing and
computational state saving/restoring. Client-side services 26
and server-side services 40 may be consumers (and, for their
responses, are in affect producers). Client-side services 26
and server-side services 40 include message handlers and
message queues. Client-side services 26 and server-side
services 40 may be suspended, i.e., the computational state
saved and client-side service 26 or server-side service 40
deactivated. While client-side service 26 or server-side
service 40 is deactivated, all commands and data client-side
service 26 or server-side service 40 would have received
from other components are saved. When client-side service
26 or server-side service 40 is reactivated to the last saved
state, client-side service 26 or server-side service 40 may be
sent all of these commands and data.

[0059] With continuing reference to FIG. 2, the bulk of
commands issued in system 10 (e.g., by commander 22 or
self-commander 24) are executed by client-side components
16. However, some commands are executed on server 14. In
an embodiment, an instance of server-side service 40 can
only be started by a command from commander 22 or
self-commander 24. The following exemplary server-side
services 40 may be provided as part of an embodiment of
system 10: a reader to read a file from server 14 in a given
format; a writer to write a file on server 14 in a given format;
a service to retrieve names of files in a directory (e.g., on
server 14); and a job service to start a server job or a cluster
job (e.g., a job executed on multiple servers or computers (a
cluster)) and monitor the server job or cluster job progress.
The job status may be passed as a message from server-side
service 40 and displayed to a user through workbench, such
as through commander 22 GUI. If commander 22 or self-
commander 24 requesting a job terminates, server-side ser-
vice 40 may continue the job until completed and then queue
the job results for later delivery to commander 22 or
self-commander 24 when restored. In the case of a job
service requested by commander 22 or self-commander 24,
server-side service 40 may contain all of the intelligence for
controlling and monitoring the requested job (e.g., compu-
tational process). Server-side services 40 that start and
monitor a requested computational process (e.g., cluster
jobs) are capable of handling requested processes for mul-
tiple commanders 22 and self-commanders 24 simulta-
neously.

[0060] In an embodiment, server-side services 40 may be
implemented as servlets which can be invoked by servlet
chaining using aliases. This servlet chaining may be imple-
mented, for example, using servlet filters and/or Request-
Dispatchers.

[0061] In an alternative embodiment, message passing
between services (e.g., between two or more server-side
services 40 or between two or more client-side services 26)

Nov. 29, 2007

may be accomplished by having messages go directly from
one service to the other and not through message framework
20. Such message passing may avoid message passing
overhead.

[0062] System Components

[0063] With reference again to FIG. 2, system components
28 are client-side components 16 used to manage system 10
and the workbench (i.e., the virtual desktop). As discussed
above, system components 28, along with message dis-
patcher 32, may issue commands to any other component
(including other system components 28). With reference
now to FIG. 3, in an embodiment, system components 28
include two components: workbench manager 42 and state
manager 44. Workbench manager 42 provides a user all
workbench functionality through a GUI. Via workbench
manager 42 GUIL a user may invoke client-side components
16, such as commanders 22 and self-commanders 24, save
and restore sessions of the workbench (e.g., state of entire
active virtual desktop, including each active component and
its computational state), determine the version of the work-
bench being run, determine what components (e.g., com-
manders 22 and self-commanders 24) are available, etc. See
below for further discussion of workbench manager 42.
[0064] State manager 44 saves or restores the state of a
component and the entire workbench (which includes all
active components in the virtual desktop and their state).
State manager 44 may maintain each saved state in a session
file (e.g., ending in .cfg) which state manager 44 manages.
State manager 44 may handle component state information
in XML. State manager 44 may save component state
information as XML. Component state includes, e.g., com-
ponent display name, component CID, what was displayed
in component GUI, what parameters selected/input in com-
ponent GUI, what modes selected, if viewer—how data is
displayed, what data displayed, and where displayed, what
processes being run, where component GUI displayed on
workbench (e.g., on workbench canvas—see below), what
jobs requested by component (including job IDs—see
below), status of requested jobs, etc. Workbench state
includes each saved component in workbench session and
whether component is active or not (is component GUI open
or not). In embodiments, session files are saved on server 14
using a server-side 10 service 40. Since session files are
saved on server 14 a saved workbench may be restored from
server 14 and on any client 12 (e.g., a user running work-
bench application on client 12 may select a previously saved
session even if that session was started and run on another
client 12). Session files may be saved in any file system
accessible by server 14. A workbench may be restored from
any server 14 with access to the file system on which the
state of the workbench is saved.

[0065] In an embodiment, a saved session file may be
thought of as a state repository for the saved workbench
session. When individual component states are saved, the
component state is saved in the session file for the work-
bench. When the state of an entire workbench is saved, the
state of each and every component instance active in the
workbench is also saved. Also saved when the state of the
entire workbench is saved is the “workbench state”, i.e., an
indication of whether a component instance that has a saved
state in the session file is active or not (e.g., whether
component GUI is displayed in workbench). In other words,
for each saved component instance in the session file, state
manager 44 determines whether that component instance is



US 2007/0276901 Al

active. Later when the workbench state is restored, only
those saved component instances that were active when the
workbench state was saved are restored. Other component
instances that were saved, but that were not active when the
workbench state was saved, may be restored individually,
e.g., by a user selecting the display name of that saved
component instance in workbench manager 42 GUI and
selecting restore. In an embodiment, whenever a workbench
is closed, state manager 44 automatically saves the work-
bench state (i.e., the indication of which saved component
instances were active and which were not active) in the
workbench session file. So, for example, if a user starts up
a workbench, activates a component instance, saves the
component instance state, closes the component instance,
and then closes the workbench, the session file will have the
saved component instance state and an indication that the
component instance was not active when the workbench was
closed. If the workbench is restored, the saved component
instance will be inactive. The user may then activate the
saved component instances by restoring that component
instance.

[0066] With continuing reference to FIG. 3, through work-
bench manager GUI, a user may manipulate saved states
within a session file. For example, a user may delete a saved
state for a component, add a state for a new component,
create a state for another instance of a component (a com-
ponent clone), and restore state for a component. State
manager 44 executes these requests.

[0067] Message Framework

[0068] With reference again to FIG. 2, message frame-
work 20 includes message dispatcher 34, dispatcher con-
nector 36 and servlet dispatcher 38. Message dispatcher 34
receives and processes messages from system 10 compo-
nents. Message dispatcher 34 routes a command message
from the command producer (e.g., commander 22 or self-
commander 24) to the consumer (e.g., self-commander 24,
client-side service 26, server-side service 40, or message
dispatcher 34). The consumer processes the command,
which results in a response (e.g., a data message(s)) being
returned to message dispatcher 34. If the consumer is a
server-side service 40, response message is passed to mes-
sage dispatcher 34 through servlet dispatcher 38 and dis-
patcher connector 36. Message dispatcher 34 routes the
response message from the consumer to the producer. If
there is an exception (error) while processing the request, an
abnormal response is sent back to the producer by message
dispatcher 34. The producer determines how to handle the
exception.

[0069] Message dispatcher 34 may be implemented as a
separate program thread. Implementing message dispatcher
34 as a separate thread makes message dispatcher 34 highly
efficient at processing messages. As with system 10 com-
ponents, message dispatcher 34 includes a message handler
and a message queue. When processing messages, message
dispatcher 34 interprets the commands contained in the
messages for routing purposes, thereby acting as a command
interpreter. Message dispatcher 34 may, e.g., also: execute
certain commands sent to it by commanders 22 and self-
commanders 24, e.g., send requesting component requested
information maintained by message dispatcher 34 (e.g.,
information about registered components); route received
server-side commands to servlet dispatcher 38 for message
passing to and execution by server-side service 40; route
received commands to intended client-side component 16

Nov. 29, 2007

consumer; “feed me your command stream”—send all com-
mands to commanders 22 that requested to monitor the
message framework 20 command stream (e.g., in order to be
able to take certain actions when certain commands appear
in the command stream); send change commands to self-
commanders, e.g., to synchronize viewer displays (e.g.,
“synchronize cursor movement” or “synchronize scroll bar
movement”). Such change commands may be directly
routed to the consumer component identified in a message or
may be routed based, e.g., on a routing matrix message
dispatcher 34 constructs for broadcasting purposes (see
discussion of Intercommunications below).

[0070] Message dispatcher 34 may be made aware of all
available components during system initialization (i.e., star-
tup of workbench application on client 12). For example,
message dispatcher 34 may scan component JAR files for
information (e.g., manifest file) about the components. Mes-
sage dispatcher 34 may scan JAR files for this information
so that it may provide the information to workbench man-
ager 42 for populating workbench manager 42 GUIL. Com-
ponent JAR files include, e.g., executable code for the
component and a manifest file, which includes the compo-
nent’s main class and component attributes (properties,
display name). Workbench manager 42 may send a com-
mand to message dispatcher 34 saying “I want to know all
available components”. In response, message dispatcher 34
may scan the component JAR files and provide the compo-
nent descriptor for each available component. Workbench
manager 42 may populate menus and one or more trees (see
below) with the available component display names. Later,
when a component is activated, e.g., through workbench
manager 42 GUI (e.g., user selects from menu), the com-
ponent instance self-registers itself (and its message han-
dlers—see below) by sending a message with its compo-
nent’s component descriptor to message dispatcher 34. As
components self-register, message dispatcher 34 forms a list
of all components that are active.

[0071] With reference again to FIG. 2, dispatcher connec-
tor 36 prepares messages for transmission over the Internet,
or other network, to servlet dispatcher 38 on server 14.
Messages that are to be executed by server-side services 40
are routed to servlet dispatcher 38. Servlet dispatcher 38 is
the server-side counterpart of message dispatcher 34. Servlet
dispatcher 38 processes and interprets command messages
and routes the messages to the appropriate consumer server-
side services 40. Server-side service 40 processes the com-
mand and returns a response (data) to servlet dispatcher 38,
which sends the response to message dispatcher 34, through
dispatcher connector 36, for routing back to the producer.
Dispatcher connector 36 may prepare a message for trans-
mission over the Internet (to servlet dispatcher 38) by
serializing the message. Likewise, when dispatcher connec-
tor 36 receives response message from servlet dispatcher 38
over the Internet, dispatcher connector 36 may deserialize
the message.

[0072] As shown in FIG. 2, in embodiments of system 10,
message framework 20 may also include messaging man-
ager 32. Messaging manager 32 provides a messaging
interface to message framework 20 for system 10 compo-
nents. Instead of interacting directly with message dis-
patcher 34, client-side components 16 and server-side com-
ponents 18 send and receive messages through messaging
manager 32. Messaging manager 32 may include messaging
methods used in system 10. In an embodiment, messaging



US 2007/0276901 Al

manager 32 and the messaging methods are the API inter-
face for components of system 10. A third-party developing
a commercial component (e.g., a commercial commander 22
or self-commander 24) designs their commercial component
to interface to system 10 through messaging manager 32 and
these message commands. Messaging manager 32 may
provide the following services to system 10 components:
manage components message queues; send component’s
request (command) messages to another component via
message dispatcher 34; register and unregister component
with message dispatcher 34; retrieve information maintained
by message dispatcher, e.g., data about a registered compo-
nent; test for features of a message; route a response to a
request to the request sender (producer). Messaging man-
ager 32 may register a component with message dispatcher
34 by sending the component’s component descriptor to
message dispatcher 34. The component descriptor includes
an identification of component’s message handler (hosted by
messaging manager 32) and a unique, system-wide ID
(CID).

[0073] In the embodiment shown in FIG. 2, there is
logically one messaging manager 32, but programmatically
there are two messaging managers 32, one on client 12 and
one on server 14. Each messaging manager 32 actually may
include different methods that client 12 or server 14 can call.
Logically, the messaging managers 32 handle communica-
tions between the dispatchers (message dispatcher 34 or
servlet dispatcher 38, respectively) and components.
[0074] In an embodiment, each system 10 component,
when launched/instantiated, has its own instance (copy) of
messaging manager 32. Each component’s messaging man-
ager 32 includes the component’s message handler and
message queue. The message handler manages the compo-
nent’ message queue. For example, the message handler
contains the queue and methods to operate on the queue,
including enqueue (put a message on the queue) and
dequeue (take a message off the queue) messages. Messag-
ing manager 32 also has higher level methods to send and
receive messages which go through the message handler to
perform the operations.

[0075] When message dispatcher 34 routes a message to a
component, message dispatcher 34 uses that component’s
message handler to put the message on the component’s
queue (e.g., hosted by component’s copy of messaging
manager 32). When a component sends a message, the
component forms the message, which contains the target
consumer of the message, and calls a send method in the
component’s messaging manager 32, which in turn calls
message dispatcher’s 34 message handler to put the message
on message dispatcher’s 34 queue. Message dispatcher 34
takes the message off the queue (dequeue the message) and
routes the message to the consumer component, using con-
sumer component’s message handler to put the message on
the consumer’s queue (which is hosted by consumer’s
messaging manager 32).

[0076] Consequently, in embodiments described herein,
all components have a message handler to manage their
message queue. Communication is through the message
handlers which contain the message queue and are hosted by
messaging manager 32. A component’s messaging manager
32 include send/receive methods which enqueue/dequeue
messages Using a message handler. Each component
includes its own messaging manager 32 which contains that
component’s message handler.

Nov. 29, 2007

[0077] One possible exception to this typical arrangement
is for system components 28. System components 28 may
host their own message handlers and message queues and
may interact directly with message dispatcher 34. This is
indicated in FIG. 2 with the dashed lines surrounding
messaging manager 32 facing system components 28. Con-
sequently, in such an embodiment, each system component
28 interacts with message dispatcher 34 through messaging
manager 32, except for system components 28, which may
directly interact with message dispatcher 34. Other embodi-
ments include system components 28 interacting through
messaging manager 32 some times and directly with mes-
sage dispatcher 34 other times.

[0078] In an embodiment, much of system 10 may be
provided to users under an open source license. In such an
embodiment, message dispatcher 34, dispatcher connector
36, servlet dispatcher 38, core commanders 22, core self-
commanders 24, core client-side services 26, core server-
side services 40 and system components 28 may be provided
under an open source license. However, such an embodi-
ment may present licensing and ownership issues for com-
mercial components. If a commercial component provided
separately were to interact directly with message dispatcher
34, certain open source licenses would require the commer-
cial component to also be open source licensed. However,
messaging managers 32 may be provided under a Berkeley
BSD license, which circumvents this issue (under some
open source licenses, a component interacting through a
BSD licensed component to open source licensed compo-
nents is not required to be open source licensed). Conse-
quently, by interacting through BSD-licensed messaging
managers 32, commercial components would not be
required to be open source licensed. Likewise, in embodi-
ments that are not provided to users under an open source
license, messaging managers 32 may be omitted. In such
embodiments, components would host their own message
handlers and message queues.

[0079] Message Passing

[0080] As indicated herein, with continued reference to
FIG. 2, normal communication between components fol-
lows a request/response paradigm. A command or data is
sent in a request message and data is returned in a response
message. The requesting component which generated the
request message is referred to as a producer. The responding
component which receives the request message and gener-
ates the response message is referred to as a consumer.

[0081] However, exceptions to this paradigm occur. For
example, an exception occurs when message dispatcher 34
a synchronously feeds its command stream as data to a
monitoring commander 22 or self-commander 24, sends
change messages so marked to all viewer self-commanders
24 or asks a component for the component’s state. In each
case, message dispatcher 34 has a list of intended receivers.

[0082] In an embodiment, communication between any
two system 10 components is implemented using message
handlers and message queues. Each component implements
a defined message handler interface. As described above,
client-side components 16 and server-side components 18
may implement their defined message handler interface in
their messaging manager 32 copy. Components register their
message handler instance with message dispatcher 34. As
described above, messaging manager 32 may perform this
service. In response, message dispatcher 34 returns its



US 2007/0276901 Al

component descriptor, which contains message dispatcher’s
34 message handler instance to the registering component.
[0083] Using the message handler of message dispatcher
34, each component can add to messages to the message
dispatcher 34 message queue (e.g., enqueue). Messaging
manager 32 (i.e., message handler included in messaging
manager 32) passes the message to message dispatcher 34
message handler with appropriate add message. Message
dispatcher 34 determines consumer component and passes
message to consumer component’s message handler, which
adds message to consumer component’s message queue
(hosted with message handler in consumer component’s
messaging manager 32).

[0084] Inan embodiment of system 10 implemented using
Java 5.0, a Java 5.0 concurrent queue class (e.g., Concur-
rentlinkedQueue) is used to implement the message queues.
This is a particularly appropriate class given numerous
concurrent components will share access to common mes-
sage queues (numerous components may concurrently
access other component’s message queues through messag-
ing manager 32 and message dispatcher 34, along with
message dispatcher’s 34 message queue). In this embodi-
ment, each item in a queue is an instance of the class
QiWorkbenchMsg. The following is an exemplary set of
methods for enqueuing and dequeuing messages:

interface IMsgHandler {
// allow someone to send me a message
public void enqueue(QiWorkbenchMsg);
// get the next message sent to me for processing
private QiWorkbenchMsg dequeue( );

An embodiment may have a concrete implementation of this
interface, e.g., ConcurrentMsgHandler, that defines the
queue and details of the two methods (enqueue and dequeue)
that operate on it. It is sufficient that every component have
one message handler. As shown above, message dispatcher
34 can send a message by calling the message consumer’s
enqueue( ) method (through consumer’s message handler).
Likewise, a component can get messages sent to it from its
message queue by calling its dequeue () method.

[0085] Upon activation of a component instance, when
messaging manager 32 registers a component’s message
handler with message dispatcher 34, the registration mes-
sage also includes a component descriptor, as stated above.
The component descriptor may include a unique component
1D (CID) and component type (e.g., whether a commander
22, self-commander 24, or client-side service 26, and what
type of commander 22, self-commander 24 (e.g., 2D viewer)
or client-side service 26 (e.g., a 10 service)), the compo-
nent’s message handler, and the components display name.
The CID is a system-wide identifier for the component. In an
embodiment, message dispatcher 34 keeps this information
in a hash table keyed on the CID. As noted above, a
component’s registration causes message dispatcher 34 to
return message dispatcher’s 34 message handler. After every
component is registered, all components can communicate
with each other using message dispatcher 34, which accord-
ingly knows all component message handlers.

[0086] When enqueue( ) or similar method is executed, the
method not only adds the message to the specified message
queue, but may also invoke a callback method, notify (),

Nov. 29, 2007

which wakes up the consumer component thread. The con-
sumer component then processes the message, generating
and sending a response, and checks for more messages in the
queue. If there are no messages in the message queue, the
component puts itself to sleep until the next message arrives.
Other embodiments may have other mechanisms for inform-
ing a consumer that a message has been added to its queue.
For example, a consumer component may monitor its queue.
[0087] Component Intercommunications

[0088] With reference again to FIG. 2, as noted above,
system 10 components interact via messages. Exemplary
interactions are illustrated with the message paths in FIG. 2.
Normally, this interaction occurs by one component, a
producer component (e.g., commander 22), sending a mes-
sage to another component, a consumer component (e.g.,
self-commander 24 or client-side service 26). However,
there are times when component (e.g., commander 22 or
self-commander 24) listens for certain messages from other
components and reacts to these messages. For example, in
an embodiment, a viewer self-commander 24 may be
instructed by the user to listen for specific data, window
and/or layer change messages from an internal window or
layer within a window. The user separately instructs the
internal window or layer within a window to broadcast the
data, window and/or layer change messages. Similarly, a
monitor commander 22 may be so instructed.

[0089] Each commander 22 and self-commander 24 GUI
may provide a menu for each category of messages to be
broadcasted. The user can instruct the component to broad-
cast a class of messages to ALL other components or
selected components. Likewise, the user can instruct the
component to listen for specific messages in each category.
These selections are conveyed in a message to message
dispatcher 34, which constructs a routing matrix of the
selected components. The user can change the selections at
any time, causing the routing matrix to be updated.

[0090] Additionally, a component can control routing and
listening programmatically. For example, commander 22 or
self-commander 24 may tell message dispatcher 34 for what
commands commander 22 or self-commander 24 wants to
listen; message dispatcher 34 will construct a routing matrix
and route the specified commands to the requesting com-
mander 22 or self-commander 24. Commander 22 or self-
commander 24 may also programmatically turn on the
commander 22 or self-commander 24’s own broadcasting.
Commander 22 or self-commander 24 may then ask mes-
sage dispatcher 34 for a list of active components and tell
another component, that commander 22 or self-commander
24 wants to interact with, to turn on that component’s
broadcasting. Commander 22 or self-commander 24 may
tell the other component to turn on its broadcasting by
sending a command to the other component instructing the
other component to listen for certain commands and to
broadcast to the producing commander 22 or self-com-
mander 24. Each component generates and marks the com-
mands that component wants message dispatcher 34 to
route. Such commands are marked by a ‘route’ flag.
[0091] See “Messages” and “Commands” below for fur-
ther description of messaging and commands.

[0092] Virtual Desktops (Workbenches)

[0093] With reference now to FIG. 4A, shown is a screen
shot illustrating an embodiment of a virtual desktop, work-
bench 50. Workbench 50 may appear as a window on client
12 desktop 60. Workbench 50 provides the graphical envi-



US 2007/0276901 Al

ronment in which system 10 components run and are inter-
acted with by users. Indeed, components, including com-
manders 22 and self-commanders 24 may generate their own
GUIs (e.g., a window) that are displayed within workbench
50, enabling users to interact with and to instruct the
component (e.g., input parameters and select options). A
user may have multiple workbenches (virtual desktops) 50
open simultaneously on a client 12. In an embodiment, the
user may switch between workbenches 50, but only one
workbench 50 may be active at a given time. In an embodi-
ment, each workbench 50 represents a separate user session.
Accordingly, in such embodiments, communication between
workbenches 50 is not supported. In an alternative embodi-
ment, communications between workbenches 50, and com-
ponents in the different workbenches 50 may be supported.
Any GUIs within workbench 50 may be resized, minimized/
maximized, moved, etc., and workbench 50 itself may be
resized, minimized/maximized, moved, etc.

[0094] In an embodiment, workbench 50 includes menu
bar 52, canvas 54, navigation tree 56 and dataset analysis
tree 58. Menu bar 52 and component/navigation tree 56
together form the GUI of workbench manager (workbench
manager GUI) that is used for managing the overall work-
bench 50 and system 10 environment, as discussed in more
detail below. Canvas 54 is the “working” window or frame
of workbench 50. Canvas 54 is where component GUIs are
displayed. Viewer self-commanders 24 display windows, in
which viewers graphically render data that are displayed in
canvas 54. Multiple component GUIs and viewer display
windows may be displayed simultaneously in canvas 54.
Likewise, multiple copies of a component (e.g., commander
22 or self-commander 24) may be launched in a workbench
50 instance and corresponding GUIs and display windows
displayed in canvas 54.

[0095] Dataset analysis tree 58 is a directory tree that
includes a listing of previously performed data analyses
(e.g., results of computational algorithms and other opera-
tions performed on sets of data by commanders 22). Such
data analyses listed in dataset analysis tree 58 may be stored
in files in a folder on client 12 and/or server 14. Dataset
analysis tree 58 may list data analyses under collapsible/
expandable folder paths indicating the location of the folder
and the files. Dataset analysis tree 58 may include multiple
folder paths listing files in multiple folders on client 12
and/or server 14.

[0096] As noted above, multiple workbenches 50 may be
active on client 12 simultaneously. As with system 10
components, the entire workbench 50 has state saving/
restoring capabilities. Each active workbench 50 running on
a client 12 may be suspended and restored, as discussed
below in detail. In embodiments, when system 10 is
launched, the last suspended workbench 50 may be restored
to its previous saved state and re-opened as a default setting.
A user may also choose at any time to restore and open any
previously suspended workbench 50 to its previously saved
state. The user may also choose to restore a currently active
workbench 50 to its previously saved state. This, in affect,
resets active workbench 50 to its previously saved state.
[0097] System 10 provides a desktop environment, work-
bench 50, that may be used for a variety of purposes. The
uses of a given implementation of system 10 are generally
determined by the components, particularly commanders 22
and self-commanders 24, that are included with the imple-
mentation. In an embodiment, system 10 provides a desktop

Nov. 29, 2007

environment for performing analysis (e.g., quantitative
interpretation) of seismic and other data.

[0098] Workbench Manager GUI

[0099] With continued reference to FIG. 4A, an embodi-
ment of the workbench manager GUI is menu bar 52 and
navigation tree 56 portion of workbench 50. As noted above,
a user may access all workbench 50 functionality through
workbench manager GUI. Through workbench manager
GUI, a user may invoke system 10 components (command-
ers 22 and self-commanders 24), save and restore sessions
(e.g., workbench 50 and components” state), determine what
commanders 22 are available, etc.

[0100] Navigation or component tree 56 is a window pane
in workbench 50 containing a directory tree of available
components, including commanders 22 (e.g., listed as “plu-
gins” in FIG. 4A), self-commanders 24 (e.g., listed as
viewers) and services (client-side services 26 and server-
side services 40—not shown), for workbench 50. Such
components (core or commercial) are available if they are
installed on client 12. The root of navigation tree 56 may be
a display name of the particular workbench 50 (e.g., “desk-
topl”) or the current project name. Tree 56 may include a
root node for each available commander 22 or self-com-
mander 24 (e.g., “plugin: Amplitude Extraction”, “viewer:
BHP2D”). Note, in the embodiment illustrated by FIG. 4A,
self-commanders 24 are all viewer self-commanders 24.
[0101] With reference now to FIG. 4B, active instances of
commander 22 or self-commander 24 may be displayed as
tree sub-nodes 62 in navigation tree 56, and have an
assigned display name, which may be a unique name (e.g.,
“Amplitude Extraction#3” or “BHP2D#6”). Each compo-
nent instance will have a unique internal name. In embodi-
ments, each component instance’s display name is initially
set to the internal name. However, a user may change the
display name. When state is restored, the display name is as
saved, even if no longer the same as the internal name. The
user may rename the subnode. The display name for a
component instance (e.g, commander 22 or self-commander
24) that has been suspended (state saved and quit) may be
shown highlighted (e.g., shown in purple). Any active ser-
vice instance (e.g., client-side service 26 or server-side
service 40) started by a commander 22 or self-commander
24 instance is displayed as a subnode of the commander 22
or self-commander 24 instance subnode (e.g., “service:
writeLocalFile” beneath commander 22 instance “myCom-
mandMonitor#1”). The active service subnode disappears
when the service completes (normally or abnormally).
Double-clicking on an available component name starts a
new instance of that component and an instance subnode
appears in the tree beneath the component name. Double
clicking on a suspended component instance name restores
that component instance.

[0102] As shown, GUIs 64 and 66, for the active instances
of Amplitude Extraction commander 22 and BHP2D viewer
self-commander 24, respectively, corresponding to the dis-
played subnodes in navigation tree 56 are displayed in
canvas 54. Also shown in FIG. 4B are active BHP2D viewer
self-commander 24 displays 68. A user may open more than
one viewer display 68 for an active viewer self-commander
24. As shown and discussed above with reference to FIG. 2,
command messages may be sent by viewer self-commander
24 to itself. These command messages may go from viewer
self-commander 24 GUI thread to viewer self-commander
24 display thread (“visualizer”). The command messages



US 2007/0276901 Al

may include messages launching the display thread, passing
selected data for display, manipulating the display per user
selections, and other common display controls.

[0103] With continued reference to FIGS. 4A-4B, work-
bench manager 42 GUI also includes menu bar 52. In an
embodiment, menu bar 52 may include the following pull-
down menus, which are displayed when selected: work-
bench, component, service and help. Component pull-down
menu includes sub-menus which may be separated into
commander 22 and self-commander 24 sections.

[0104] The workbench menu may include the following
selections: New, for starting a new virtual desktop (work-
bench 50); Open, a submenu for restoring a saved work-
bench 50 (by opening saved workbench session file); Save
As, for saving current workbench 50 state (by saving a
clone/copy of workbench session file)—first time a work-
bench 50 state is saved, dialog asks for location and name for
session file (e.g., .cfg file); Save, Quit, for saving current
workbench 50 state and quitting (terminating workbench
50); Quit, for quitting (may display dialog asking if want to
save state); Rename, for renaming current workbench 50;
and Preferences, for setting workbench preferences. The
Restore submenu lists all workbenches 50 the user has
previously saved (i.e., saved the state of), which may include
current workbench 50. Restoring current workbench 50
refreshes current workbench 50 to a previously saved state
(see discussion above under state manager 44). Selecting
New may open a dialog window that asks the user if they
want to save, close (save+quit) or quit current workbench
50. Selecting Rename opens a dialog window in which the
display name of current workbench 50 (root node of the
component tree) can be changed. Workbench menu may also
include a Delete selection to delete a saved workbench
session file.

[0105] Preferences are configuration settings for work-
bench 50 set be a user for the user’s workbench sessions. For
example, the user may specify a default server 14, default
project and/or default workbench 50. While defaults are set,
each new workbench application session will automatically
launch with those settings. A default workbench 50 may be
any workbench 50 previously saved by user. A default
project is a previously saved project. A project is folder that
may include one or more saved workbenches 50. It is
generally up to the user what is saved in the project folder.
For example, a project may correspond to a real-world
project (e.g., a drilling project, a well site, etc.). Work-
benches, saved state (session) files (save sets), saved data
files (data sets), etc., related to the project may be organized
and saved in a project folder. A default server 14 is simply
server 14 on which system 10 operates (i.e., which hosts
server-side components 18 and from which workbench 50
may be launched). System 10 may operate from a plurality
of servers 14. Projects and workbenches 50 are saved on
servers 14.

[0106] In embodiments, component menu provides selec-
tions for managing commanders 22 and self-commanders
24. In embodiments, Component menu includes a Register
selection, for registering a commander 22, an Update sub-
menu, a New submenu, a Open submenu, a Save submenu,
a Save As submenu, a Save+Quit submenu, a Quit submenu,
a Rename submenu, and a Delete submenu. Selecting Reg-
ister causes a component registration dialog window to
pop-up. This registration refers to the registration of a
component with system 10, not registration of a component

Nov. 29, 2007

instance with message handler 32 upon launching of the
component instance. Only components officially registered
(authenticated) with system 10 are available to the user.
Generally, core components that are provided with work-
bench application are automatically registered with system
10 and do not need to be registered by a user. Consequently,
in embodiments, only commercial components are available
for registering with system 10. The Update submenu dis-
plays a list of all available components (e.g., commander 22
or self-commander 24). In an embodiment, core components
are automatically updated upon system 10 startup and are
not available for updating by user (i.e., not displayed in
Update submenu). Selecting an available component in the
list causes an update dialog window to pop-up. The update
dialog window enables the user to update the selected
component, replacing an existing available component with
a newer version of component.

[0107] The New submenu also displays a list of all avail-
able components; selecting an available component starts a
new instance of the selected component. The Open submenu
is a list of all component instances the user has previously
saved (i.e., saved the state of) that are inactive; selecting a
saved, inactive component instance causes that component
instance to be restored (i.e., opened to component’s saved
state (e.g., from saved session file)). In an alternative
embodiment, the list of saved components instances may
include active components; opening an active component
refreshes it to a previously saved state. The Save submenu,
the Save+Quit submenu, the Quit submenu and the Rename
submenu each provide a list of all active components,
selectable for saving the selected active component state in
workbench session file, saving the selected component state
and closing the selected component, closing the selected
component and renaming the selected component, respec-
tively. The Save As submenu allows the state of an active
component instance to be saved as a clone (new instance),
given a unique name, and a new clone instance of compo-
nent opened in canvas 54. Display name of an active
component in tree 56 may be changed via rename. The
Delete submenu provides a list of all saved component
instances and allows a user to select and delete a saved
component instance from a session file. Component menu
may also include menu selections for uninstalling available
components, checking for updates, downloading new com-
ponents, etc. In embodiments, such selections are usually
limited to commercial components.

[0108] With continued reference to FIGS. 4A-4B, service
menu includes selections for Status and Quit submenus.
Each of these submenus includes a list of all active client-
side services 26 and server-side services 40. Selection of a
service in the status submenu displays the status of the
service in a dialog window. Selection of a service in the quit
submenu terminates the service.

[0109] With reference again to FIGS. 4A-4B, clicking on
the workbench name or a component name in navigation
tree 56 displays a context menu pop-up for the selected item.
The content of the context pop-up may depend on the state
of the selected workbench 50 or component. Selecting the
workbench name displays a workbench context menu,
which includes selections for opening, saving as, saving+
quitting, quitting and renaming current workbench 50. The
name of current workbench 50 may denote project or
subproject. The restore selection only appears if work-



US 2007/0276901 Al

bench’s 50 state has been saved. Restoring workbench 50
refreshes it to its previously saved state.

[0110] Component context pop-up menus include selec-
tions for opening a new instance of, opening, saving, saving
as, saving+quitting, deleting, quitting and renaming the
selected component. If the selected component is a sus-
pended instance, the context pop-up menu includes selec-
tions for activating a new instance of, opening (restoring) or
renaming the selected component. The opening selection
only appears for a selected component if its state has been
saved. In an alternative embodiment, the opening selection
may also appear for active components may also; opening an
active component refreshes the component to its previously
saved state.

[0111] The service context menu includes selections for
status and quitting. If the selected service is active, its status
may be queried. An active service may be quit (terminated).
Quitting a service removes it from component navigation
tree 56.

[0112] Workbench Manager

[0113] With reference again to FIG. 3, workbench man-
ager 42 may communicate with servlet dispatcher 38 to
determine what components (e.g., commanders 22 and self-
commanders 24) are available. For example, when work-
bench manager 42 is launched (i.e., on start up of system 10
on client 12), workbench manager 42 sends a message to
servlet dispatcher 38 requesting a list of the available
commanders 22. This list is used to populate workbench
manager GUI (see FIGS. 4A-4B above). List items may be
component descriptors. The list of available commanders
22, and the associated information, may be stored on server
14 in a file or files. For example, the information for the list
may be stored in JAR files. The list may be generated by
servlet dispatcher 38 scanning the manifest of commander
JAR files. The manifest includes various commander 22
attributes, may include the display name, main method name
(for launching instance of component), and type of compo-
nent. The generated list is provided to workbench manager
42, upon request, for populating workbench manager’s
menus and component tree. The same procedure may be
followed by workbench manager 42 to get a list of available
self-commanders 24, and similar information may be pro-
vided.

[0114] As discussed above with reference to FIGS. 4A-4B,
the workbench manager GUI may display selections to
register and update a component. If register is selected, a
dialog window pops up in which the user specifies the
(display) name of component and where component is
located, e.g., website from which component may be down-
loaded (as mentioned above, in embodiments, core compo-
nents are generally automatically registered and generally do
not need to be registered with system or updated by user—
launching workbench will update core components). This
information is sent to message dispatcher 34 which fetches
(downloads) the commander attributes (e.g., the JAR file),
saves component in a directory and adds the component
profile information to a persisted list of components. The
persisted profile information about component may include
commander’s display name, a URL of the component’s
attribute file (e.g., component JAR file), etc. The component
attribute file (e.g., the JAR file) may then be dynamically
loaded on client 12. Once dynamically loaded, an instance of
new component may be launched in workbench. Updating
component works the same way except a new component

Nov. 29, 2007

installation file (e.g., a new JAR file) is fetched which
replaces the old one. Persistent storage of component profile
information may be a component database, such as, e.g.,
Hibernate or HSQLDB on client 12. The above describes
one exemplary mechanism for obtaining new commercial
components. Other mechanisms may be used. For example,
a user may manually obtain and install a new component,
with registration being completed next time workbench is
launched.

[0115] If the registration/updating of commander 22 (or
self-commander 24) is successful, the display name of
commander 22 (or self-commander 24) is added to or update
in the commander (or self-commander) menu.

[0116] Messages

[0117] With reference again to FIG. 2, as mentioned
above, each active component of the system has a unique,
system wide identifier called the component ID (CID). In an
embodiment, CIDs are carried in each message so the
producer of a message and the target consumer of a message
are uniquely identified. In an embodiment, a CID may be a
component’s fully qualified Java name (the method which
will instantiate an instance of the component), which is
unique across the application, e.g., package.class followed
by a unique number for different multiple instances.
[0118] Fach message also has a unique system wide
identifier called the message ID (MSGID). The MSGID is
set by the producer of a request message and is carried in
each response message so the producer can distinguish
responses from multiple requests, especially requests to the
same consumer such as a client-side service 26. One pos-
sible MSGID is a timestamp of when the request message
was generated.

[0119] In an embodiment, a message is an instance of Java
QiWorkbenchMsg class, a serializable object, with the fol-
lowing attributes:

[0120] Producer ID—the CID for the producer of a
message. Used by message dispatcher 34 to know
where to direct a response message.

[0121] Consumer ID—the CID for the consumer of a
message. Used by message dispatcher 34 to know
where to direct a request message.

[0122] Message kind. May include:

[0123] CMD, message is a command to be sent to its
designated consumer.

[0124] CMD_ROUTE, message is a command to be
routed to other agents as determined by message
dispatcher 34 routing matrix.

[0125] DATA, message is information to be returned
to its designated producer.

[0126] DATA-CMD, message is a command to be
treated as data, not to be executed.

[0127] Command—a command to be executed by the
recipient of the message; usually, a string.

[0128] Message ID—the MSGID.

[0129] Content type—data type of the message content,
usually expressed as a string.

[0130] Message content—an object. If the message is a
command, the object is its argument(s). If the message
is data, the object is the data.

[0131] If the message is a command, the Command
attribute is not the full command. The command argument(s)
are contained in the Content attribute. The reason for this is
that it would not be efficient to completely represent a
command as a string, as when, for example, an argument is



US 2007/0276901 Al

an instance of a class, i.e., an Object. The bulk of message
passing is on client 12, so the message object can be passed
as a parameter in a Java method. When the message object
is sent to servlet dispatcher 38 running on a remote machine,
the message object may be serialized into XML, e.g., using
XStream (see http://xstream.codehaus.org), by dispatcher
connector 36. The XML is received and deserialized into an
object by servlet dispatcher 38. Alternatively, system 10
could use a Java Serialization API to flatten an object to a
byte file and restore it to an object from the byte file. In this
case, both the message and the message content must be
serializable objects. To use the objects, they must be cast to
their correct type.

[0132] Journaled commands may be serialized into XML,
e.g., using XStream. A serialized command script file there-
fore consists of a sequence of commands in their XML
representation.

[0133] Consumers of a command message may decode a
command, e.g., by calling methods in a Java CommandDe-
coder class. The consumer of the message must know the
data type of the message content in order to process it; it is
up to the consumer to cast the object to its data type. The
content’s data type is carried with the message for cases
where it necessary to distinguish the type.

[0134] In order for a producer of a command to be able to
identify returned responses (the producer may have sent out
multiple commands), the producer must set the MSGID of
a command and maintain a list of commands by MSGID for
which the producer is waiting for a response. A response will
carry the request’s MSGID. The MSGID also serves to
distinguish responses from different consumer instances
such as a service. For example, a commander 22 or self-
commander 24 may request three (3) different files be read
by a reader server-side service 40. The returned messages
containing the files would have a different MSGID the
producer can use to determine which read request the
response matches.

[0135] Commands

[0136] With reference again to FIG. 2, commands are
produced by commanders 22, self-commanders 24, message
dispatcher 34, and workbench manager 42. The following is
a summary of different exemplary commands that may be
generated by an embodiment of system 10:

[0137] Commander 22 Commands:

[0138] Ask message dispatcher 34 for list of available
services. For commander 22 (or self-commander 24) to
know the CID of a target client-side service 26 or
server-side service 40, commander 22 may ask mes-
sage dispatcher 34 for a list of available services. Each
list item contains the CID of a service and a description
of the service so commander 22 can distinguish
between services.

[0139] Instruct service to perform specified service—
instructs client-side service 26 or server-side service 40
to perform service.

[0140] Monitor message dispatcher 34 command
stream (instructs message dispatcher 34 to send com-
mands received by message dispatcher 34).

[0141] Refresh viewer self-commander 24 displays—
instructs viewer self-commanders 24 to refresh dis-
plays.

[0142] Tell me the state of a service—instructs client-
side service 26 or server-side service 40 to provide state
of service (e.g., in-progress, complete, stalled, etc.).

Nov. 29, 2007

[0143] Self-Commander 24 Commands:

[0144] Synchronize cursor on viewer self-commander
24 display; target consumer is corresponding viewer
self-commander 24.

[0145] Synchronize scroll bar on viewer self-com-
mander 24 display; target consumer is corresponding
viewer self-commander 24.

[0146] Read a file—instructs reader client-side service
26 or server-side service 40 to read a file, provide data
from file to self-commander 24.

[0147] Write a file—instructs writer client-side service
26 or server-side service 40 to write a file.

[0148] Get list of other self-commanders 24 (e.g., other
viewers) (from message dispatcher 34).

[0149] Get the CID of my display visualizer (if display
visualizer of viewer self-commander 24 has separate
CID, gets CID of corresponding display visualizer from
message dispatcher 34).

[0150] Common Component Commands:

[0151] Register/Unregister me (sent to message dis-
patcher 34 to register or unregister producer component
(e.g., commander 22, self-commander 24 or client-side
service 26)). Includes, e.g., CID, type of component,
description, display name.

[0152] Send me component descriptor of a component
which contains component message handler (sent to
message dispatcher 34).

[0153] Save my state (sent to state manager 44 to save
state of component).

[0154] Restore my state (sent to state manager 44 to
restore state of component).

[0155] Get me a list of files in a directory
[0156] Report an error in processing of request
[0157] Message Dispatcher 34 Commands:

[0158] Give me the list of server-side services 40 (sent
to servlet dispatcher 38).

[0159] Give me the list of available components (e.g.,
commander 22, self-commander 24, client-side service
26 or server-side service 40) (sent to servlet dispatcher
38).

[0160] Give me a list of jobs and cluster jobs and their
status (sent to servlet dispatcher 38 to request list of
jobs being performed by server-side services 40 and
status of jobs).

[0161] Give me job/cluster job status (sent to servlet
dispatcher 38).

[0162] Give me a list of saved virtual desktops (work-
benches 50) (sent to servlet dispatcher 38).

[0163] Workbench Manager 42 Commands:

[0164] Save desktop state (saves selected workbench 50
state)—sent to state manager 44.

[0165] Save desktop state and quit application (saves
selected workbench 50 state and closes application
(i.e., all active workbenches 50, components, message
framework 20, etc.)}—save command sent to state
manager 44, quit command sent to message dispatcher
34.

[0166] Start a saved desktop (restores a saved work-
bench 50)—sent to state manager 44.

[0167] Quit application.

[0168] Register new commander 22 or self-commander
24 (e.g., register new commercial component with
system 10).



US 2007/0276901 Al

[0169] Update commander 22 or self-commander 24
(e.g., update commercial component).

[0170] Launch commander 22 (starts commander 22
instance thread)—sent to message dispatcher 32.

[0171] Launch self-commander 24 (e.g., a viewer)
(starts self-commander 24 instance thread)—sent to
message dispatcher 32.

[0172] Kill commander’s 22 (or self-commander 24)
computational process—interrupts and terminates
commander’s 22 (or self-commander’s 24) computa-
tional process —sent to message dispatcher 32.

[0173] Activate yourself (activates and displays com-
ponent GUI in workbench 50)—sent to commander 22
or self-commander 24.

[0174] Deactivate yourself (deactivates and closes com-
ponent GUI in workbench 50)—sent to commander 22
or self-commander 24.

[0175] Give me a list of active components (sent to
message dispatcher 34). Server-side services 40 are
always active.

[0176] Give me a list of non-active available command-
ers 22 (or self-commanders 24) (sent to message dis-
patcher 34).

[0177] Give me a list of non-active local services (cli-
ent-side services 26) (sent to message dispatcher 34).

[0178] Give me a list of non-active viewers (i.e., viewer
self-commanders 24 (sent to message dispatcher 34).

[0179] Give me status of a job or cluster job (sent to
message dispatcher 34).

[0180] State Manager Commands:

[0181] Give me your state (sent to component (e.g.,
commander 22, self-commander 24 or client-side ser-
vice 26) to request state of component).

[0182] Save component state (sent to servlet dispatcher
38 via message dispatcher 34 to request that state of
component instance be saved). Parameters may
include, e.g.: CID for component, state of component,
user id and desktopName (name of virtual desktop in
which component instance is running).

[0183] Get saved component state (sent to servlet dis-
patcher 38 via message dispatcher 34). Parameters may
include, e.g.: CID for component, user id and desktop-
Name (name of virtual desktop in which component
instance is running).

[0184] Launching Workbench System

[0185] With reference again to FIG. 2, the workbench
application implementation of system 10 is a client-server
application. Embodiments of the workbench application run
under the Tomcat Web Servlet container. Server 14 (e.g., a
Tomcat server) runs either remotely on a separate machine
or locally on the user’s machine (i.e., on same machine as
client 12). In an embodiment, each component comprising
the application is a separate thread which performs its own
initialization.

[0186] In an embodiment, server-side components 18 are
server-side services 40 (e.g., servlets) and servlet dispatcher
38, as discussed above. In an embodiment, servlet dispatcher
38 either knows about all server-side services 40 or can learn
about them if each is packaged in, e.g., separate JAR files
with manifest files itemizing their properties. If the latter, the
JAR files may be stored in a library directory (e.g., “lib”
directory stored on server 14), from which servlet dispatcher
38 can access and scan the manifest files. The manifest files
contain a property that identifies the JAR file as for a

Nov. 29, 2007

server-side service 40. In a similar manner, servlet dis-
patcher 38 can learn about available core client-side com-
ponents 16 (commanders 22, self-commanders 24 and cli-
ent-side services 26). Message dispatcher 34 may learn
about commercial components installed on client 12.

[0187] In an embodiment, once system 10 is deployed to
server 14 (e.g., Tomcat), the user may accesses a main
installation web page of system 10 via a browser which
contains a Java WebStart™ link. For example, a user may
enter a Universal Resource Locator (URL) for the installa-
tion web page of system 10 into a web-browser (e.g.,
Internet Explorer™ (IE), Firefox™, Opera™, Safari™,
Netscape Navigator™) and follows specified steps provided
by installation web page to install application, including
client-side components 16, onto client 12. Client-side com-
ponents 16 only need be installed once (e.g., using this
link)—once installed, for example, a WebStart desktop icon
may be created on client’s 12 desktop (e.g., client desktop
60—see FIG. 4A). Thereafter, the user can launch/start the
workbench application (access system 10) on client 12 using
the WebStart desktop icon. Client-side components 16 pro-
vided with installation of system 10 are saved and loaded on
client 12. Client-side components 16 may also be packaged
in, e.g., separate JAR files with manifest files itemizing their
properties. JAR files, downloaded and saved on client 12
during installation may be stored in a library directory, from
which workbench manager 42 can access and scan the
manifest files. In embodiments, primary copies of core
client-side components 16 are maintained on server 14.
When application is installed on client 12, executable copies
of client-side components 16 are downloaded and saved on
client 12. Instances of client-side components 16 are
launched from these copies. However, in embodiments,
servlet dispatcher 38 may more readily locate and obtain
information from the primary copies on server 14.

[0188] Launching the workbench application (e.g.,
directly from a system 10 website or by clicking WebStart
desktop icon) starts execution of the workbench manager’s
42 initialization routine. With reference now to FIG. 5,
shown is a flowchart illustrating the initialization routine, an
embodiment of method 70 for providing a graphical web-
based workbench environment with intelligent plug-ins.
Workbench manager 42 may determine if user has set a
default server (see preferences above, with reference to
FIGS. 4A-4B) (block 72). If not, workbench manager 42
starts dialog with user (e.g., display server dialog GUI
requesting user select or enter server 14) and receive user
server selection (block 74). Workbench manager 42 con-
nects to default or selected server (block 76). Workbench
manager 42 may determine if user has set a default project
(see preferences above) (block 78) and, if not, start dialog
with user (e.g., display project dialog GUI requesting user
select or enter project) and receive user project selection
(block 80). Workbench manager 42 opens selected/default
project folder on server 14 (block 82). Workbench manager
42 may determine if user has set a default workbench (block
84) and, if not, determine if user has any suspended (saved)
workbenches 50 (block 86). If the user does not have a
default workbench 50, but, has any suspended workbenches
50, the latest one may be automatically restored; otherwise,
a new workbench 50 is created (block 88). In an embodi-
ment, a default or new workbench 50 may be instantiated
with a Java webpage invocation using a URL that points to
Java code on server 14 that invokes workbench 50 as shown



US 2007/0276901 Al

in FIG. 4A. If restoring default or suspended workbench 50,
saved states of workbench 50 and active components are
obtained from server 14 to further populate workbench 50.
If there are any saved data sets in open project folder, they
may be displayed in dataset analysis tree 66.

[0189] Workbench manager 42 starts up message frame-
work 20, specifically starting message dispatcher 34 thread
and calling message dispatcher’s 34 initialization method
(block 90). The workbench manager 42 receives message
dispatcher 34 component descriptor, which includes mes-
sage dispatcher’s 34 message handler, when instantiating
message dispatcher 34. Afterwards, workbench manager 42
registers itself and its message handler with message dis-
patcher 34 (block 92). Message dispatcher 34 asks servlet
dispatcher 38 for a list of all server-side services 40 and
available components (e.g., commanders 22 and self-com-
manders 24) (block 94). In response to this request, servlet
dispatcher 38 may scan for available core components, e.g.,
by scanning JAR files looking for available components
(e.g., commanders 22 and self-commanders 24) (block 96).
In this manner, components that ship with workbench appli-
cation get recognized as available. Likewise, message dis-
patcher 34 may scan for available commercial components
(e.g., scan commercial component JAR files in component
cache).

[0190] Workbench manager 42 may ask message dis-
patcher 34 for all available components in system 10 (block
98). In an embodiment, workbench manager 42 may ask for
available components before blocks 94-96. Workbench
manager 42 may then display workbench manager GUI in
displayed workbench 50, populating the workbench man-
ager GUI with available components determined as set forth
above (block 100). Workbench manager 42 waits for user to
take action in workbench manager GUI (e.g., make selection
to launch a component), and issues messages in response to
user actions (block 102).

[0191] System 10 may optionally display a login dialog
window before the beginning of the process described
above. For example, the login dialog window may be
displayed as soon as user accesses system 10 website or
selects WebStart desktop icon to launch application. User
logins through login dialog window. After the user is authen-
ticated, system 10 proceeds to launch workbench 50 and
proceed to execute method 70.

[0192] Note that system 10 initialization process described
does not mention automatically launching any components
on startup of workbench 50 (e.g., viewer self-commander
24). In an embodiment, components are not automatically
launched, but must be explicitly activated by the user.
However, the user may set an option/preference to start up
workbench 50 with a component or components active.
[0193] Suspending and Restoring Workbench

[0194] When using system 10, a user may wish to quit for
the day, but want to pick up later from where they left off on
the same user machine (client 12) or a different user machine
(client 12). System 10 provides this ability, by having the
ability to save the state of an active workbench 50 and
restoring workbench’s 50 saved state later. The state of
workbench 50 includes the state of all components active in
workbench 50. Saving the state of a workbench 50 thus
comprises collecting the state of each active component in
workbench 50 and the workbench state itself (e.g., which
component GUIs active and displayed in canvas 54), and
saving the state on server 14. Restoring workbench 50

Nov. 29, 2007

includes reinstating the saved state of each component and
the workbench state at the time the state of workbench 50
was saved. If re-instating the saved state of an active
workbench 50, system 10 reinstates the state of all previ-
ously saved components. Only components that were active
when workbench 50 was saved are active when it is re-
instated.

[0195] With reference now to FIG. 6, shown is a flowchart
illustrating further steps of method 70 for providing a
graphical web-based workbench environment with intelli-
gent plug-in, including exemplary launching, saving and
restoring of components and workbench. The example
shown here is for commander 22, but the same may apply for
other components, such as self-commanders 24. Workbench
manager receives user selection of available commander 22
(e.g., from pull-down menu on workbench manager GUI or
component context pop-up menu (see FIG. 4A-4B descrip-
tion above)) and launches commander 22 (block 110). If
commander 22 has a GUI, commander 22 GUI is displayed
on workbench 50 (e.g., in canvas 54). Messaging manager
32 instance for commander 22 is created and commander 22
instance and its message handler are registered with message
dispatcher 34 (block 112). User uses or operates commander
22, for example, entering input parameters and selecting
specific operations to be performed through commander 22
GUI (block 114). Certain operations may cause commander
22 to request a service (e.g., command client-side service 26
or server-side service 40 to read data from client 12 or server
14 or perform a job) (block 116). Likewise, commander 22
may command self-commander 24 to perform some opera-
tion (e.g., request viewer to graphically render results of a
computational operation or synchronize cursor movement)
(block 118).

[0196] User may request saving of commander 22 state,
which causes workbench manager 42 to send command to
state manager 44 to save commander 22 state (block 120).
Message with state save request includes CID of commander
22. State manager 44 may send message to commander 22
requesting commander’s 22 state information (block 122).
When the state information is retrieved, state manager 44 in
turn instructs servlet dispatcher 38 to save commander’s 22
state on server 14 (block 124). Embodiments of system 10
include a server-side service 18 (e.g., servlet) that performs
the state-saving operations on server 14.

[0197] Alternatively, components may send messages to
state manager 44 with the component’s state for automatic
saving of component state. Such messages may be sent on
a periodic basis, similar to a timed-backup. As mentioned
above, system 10 may include components that perform this
periodic backup of state (e.g., workbench and/or component
state). Such automatic state saving may be set up under user
workbench or component preferences.

[0198] User may terminate commander 22 (block 126). If
any requested jobs are still in progress when commander 22
terminates, the requested job may continue after commander
22 termination until complete (e.g., minutes, hours, days,
etc.) (block 128). When components’ (including commander
22 and job service instances) states are saved, the saved
states may include pending requested job information (e.g.,
job IDs and job status). If commander 22 and job service
(client-side service 26 or server-side service 40) state has
been saved with job information when commander 22 is
terminated, the job result may be retrieved when commander
22 is reinstated for that workbench 50. The job result may



US 2007/0276901 Al

have been saved to a user requested file. When commander
22 is reinstated, job service requests job status and job status
is returned with job result (block 136). If job completed
normally, job result may be standard, expected output of job.
If job terminated abnormally or another error was encoun-
tered, job result may be error message. This process of
continuing jobs after commander 22 termination may apply
to other services besides jobs in progress when commander
22 terminates.

[0199] With continuing reference to FIG. 6, user may
request restoration of commander 22 (block 130) (e.g., select
open in component pull-down menu and selected available,
saved commander 22—see above). When workbench man-
ager 42 receives restoration request, workbench manager 42
sends a command to state manager 44. State manager 44 in
turn instructs servlet dispatcher 38 to retrieve commander’s
22 state from server 14 (block 132). Embodiments of system
10 include a server-side service 18 (e.g., servlet) that per-
forms the state-retrieving operations on server 14. The state
information is sent in a response message back to state
manager 44, which then sends message to commander 22
instructing commander 22 to restore its state (block 134). As
noted above, launching, state-saving and restoring of self-
commanders 24 may be performed in the same manner as
described above and illustrated in FIG. 6 for commanders
22.

[0200] To save and restore a virtual desktop (workbench
50), similar actions are performed. User may request saving
of workbench 50 state (e.g, through workbench manager
GUI), which causes workbench manager 42 to send com-
mand to state manager 44 requesting state of workbench 50
(and all open components) be saved (message includes
workbench 50 name or other ID) (block 138). State manager
44 requests state information from all active client-side
components 16 (including workbench manager 42) (block
140). State manager 44 may also request status and save of
all pending services. Once state information is received,
state manager 44 instructs servlet dispatcher 38 to save
workbench state and client-side components 16 states on
server 14 (block 142). The workbench state and components
state may be saved as a .cfg file(s). Embodiments of system
10 include server-side service(s) 18 (e.g., servlet) that per-
forms the state-saving operations on server 14. This state
information may include status of pending server-side ser-
vices and jobs. If workbench 50 is terminated (block 144),
pending server-side services and jobs may continue as
discussed above. Workbench 50 may be restored as
described above (block 146). For example, state manager 44
may instruct servlet dispatcher 38 to retrieve workbench 50
state and saved state of all client-side components 16 from
server 14. Embodiments of system 10 include a server-side
service(s) 18 (e.g., servlet) that performs the state-retrieving
operations on server 14. The state information is sent in a
message back to client 12 and workbench 50 is restored.
Once restored, user may continue use of workbench 50 and
system 10.

[0201]

[0202] Insome embodiments, users must login before they
can use system 10. In an embodiment, login requires a user
to enter their user id and password. System 10 may include
a database of registered users that contains their profile
information. Part of a user’s profile may be a role which
controls the user’s access rights to system 10.

Login and Security

Nov. 29, 2007

[0203] User’s may be restricted to accessing certain client-
side components 16 (and/or server-side components 18)
based on privileges or additional roles. A user only needs to
log-in once. Embodiments may includes an option to
remember their user id and password on the computer they
are logging-in from. This login information may be saved,
for example, in a cookie on user’s machine. In an embodi-
ment, servlet dispatcher 38 handles security. Accordingly,
servlet dispatcher 38 determines what components a user
can access, controls user’s realm of control, etc.

[0204] Exemplary Commanders

[0205] As discussed above, system 10 may include a
number of core commanders 22 and self-commanders 24
that are provided or packaged with implementations of
system 10 and commercial commanders 22 and self-com-
manders 24 that are developed and provided separately (e.g.,
by third-parties) for addition to system 10. In a sub-surface
data embodiment of system 10, the following commanders
22 may be provided (as core or commercial). The exemplary
commanders 22 below perform multi-dimensional analysis
of data through their computational analysis and displays on
viewer self-commanders 24 (e.g., 2D, 3D and well-log
viewers).

[0206] Wavelet Extraction Commander

[0207] Wavelet extraction or derivation commander 22 is
invoked as other commanders 22 discussed above. The
wavelet extraction commander 22 may run a well-tie and
wavelet extraction tool. Wavelet extraction commander 22
estimates wavelet coeflicients, other parameters associated
with uncertainty in time-to-depth mapping, positioning
errors in the seismic imaging, and useful AVO-related
parameters in multistack extractions. Wavelet extraction
commander 22 is capable of multistack and multiwell
extractions. Wavelet extraction commander 22 performs
multi-dimensional analysis of data (e.g., uncertainty and
estimation analysis). An exemplary wavelet extraction tool
is described in “Wavelet extractor: A Bayesian well-tie and
wavelet extraction program,” James Gunning, Michael E.
Glinsky (Feb. 21, 2005), Computer & Geosciences 32, p.
681-695 (2006), is hereby incorporated by references (see
also http://oplink.net/~glinsky/tech_papers/WaveletExtrac-
tion_cg.pdf). Set-up parameters for a wavelet extraction
commander 22 that may appear in wavelet extraction com-
mander 22 GUI displayed to user on workbench 50 may
include:

[0208] The filepath of an Extensible-Markup Language
(XML) file, e.g., ModelDescription.xml, that specifies
parameters needed for the wavelet extraction. This file
may be stored on server 14.

[0209] The filepaths of the near offset seismic data and
the far offset seismic data files. This data may be stored
on server 14.

[0210] 'The filepath of the well log file. This file may be
stored on server 14.

[0211] The filepath of the output synthetic seismic
traces data file. This file may be stored on server 14.

[0212] Wavelet extraction commander 22 GUI may also
include an Edit button that is active once the path is entered.
Selecting the Edit button invokes an XML Editor (see
below) to edit the above-mentioned XML file. After editing
the XML file, it can be saved. When all of the input and
output parameters have been specified, the user may select
an OK button and the wavelet extraction commander 22
performs the wavelet extraction with the specified param-



US 2007/0276901 Al

eters. When wavelet extraction commander 22 has com-
pleted wavelet extraction, the user may add the resulting
data file (e.g., displayed in dataset analysis tree 66) as a layer
on a compatible view—e.g., on a display of a viewer
self-commander 24, such as a well-log or 3D viewer. In
other words, user may launch a viewer self-commander 24
and load result data file generated by wavelet extraction
commander 22. Alternatively, wavelet extraction com-
mander 22 may automatically launch viewer self-com-
mander 24 and send it result data. Wavelet extraction com-
mander 22 may utilize well-log and 3D viewer to display.

[0213] Amplitude Extraction Commander

[0214] Amplitude extraction commander 22 is invoked as
other commanders 22 discussed above. Amplitude extrac-
tion commander 22 may run an amplitude extraction tool,
such as the exemplary tool described in the paper “Integra-
tion of Uncertain Subsurface Information Into Multiple
Reservoir Simulation Models,” Michael E. Glinsky et al.,
The Leading Edge, pages 990-999 (October 2005), which is
hereby incorporated by reference (see also http://oplink.net/
~glinsky/papers_refereed/tle_stybarrow_ 05.ndf). Ampli-
tude extraction commander 22 extracts amplitudes and ana-
lyzes extracted amplitudes to generate volumetric and risk
estimates. Bayesian probabilistic techniques may be used
extensively in the process.

[0215] Parameters such as described in the paper may be
entered through amplitude extraction commander 22 GUIL
Such parameters may be selected from data displayed by
viewer self-commanders 24. For example, seismic data for
the amplitude extraction may be selected from data dis-
played on a 2D or 3D viewer, e.g., as prompted by amplitude
extraction commander 22. Furthermore, a user may select a
region or area on a map displayed on a 2D viewer on which
the amplitude extraction is to be performed, e.g., as
prompted by amplitude exiraction commander 22. For
example, amplitude extraction commander 22 may send a
command message launching viewer self-commander 24
and requesting that it obtain and display map or other data.
Viewer self-commander 24 may send as response the data
(e.g., area on map) selected by user. Amplitude extraction
commander 22 may then retrieve necessary additional data
(e.g., associated with selected area on map), e.g., by sending
command messages to client-side service(s) 26, if data on
client 12, or server-side service(s) 40, if data on server 14 or
elsewhere. Alternatively, amplitude extraction commander
22 may send command messages to server-side services 40
to perform necessary computational operations on data, if
data on server 14 or elsewhere, rather than retrieving the
necessary data and performing operation on client 12. Such
computational operations may be requested and performed
as a cluster job. Only the computational results would then
be returned to amplitude extraction commander 22. In this
manner, client 12 processing load may be reduced. Other
commanders 22 may operate in this manner. Amplitude
extraction commander 22 may also request viewer self-
commander 24 display the results (resulting data file).
Resulting data file may also be displayed as above.

[0216] Delivery Lite Commander

[0217] Delivery Lite commander 22 is invoked as other
commanders 22 discussed above. Delivery Lite commander
22 may run a tool for model-based Bayesian seismic inver-
sion. Such a tool may be the exemplary tool described in the
paper “Delivery: an open-source model-based Bayesian
seismic inversion program,” James Gunning and Michael E.

Nov. 29, 2007

Glinsky, Computers & Geosciences 30, pp. 619-636 (2004),
which is hereby incorporated by reference (see also http://
oplink.net/~glinsky/tech_papers/DeliveryPaper.pdf). Deliv-
ery Lite commander 22 may operate in system 10 as
described above for wavelet extraction commander 22 and
amplitude extraction commander 22.

[0218] Spectral Decomposition and Stratigraphic Flatten-
ing Commander

[0219] Spectral decomposition and stratigraphic flattening
commander 22 is invoked as other commanders 22 dis-
cussed above. Spectral decomposition and stratigraphic flat-
tening commander 22 may run a tool for estimating litho-
facies probabilities given a seismic wavelet response via a
Bayesian inversion. Such a tool may be the exemplary tool
described in the paper “Geologic Lithofacies Identification
Using the Multiscale Character of Seismic Reflections,”
Moshe Strauss, et al., Journal of Applied Physics, pp.
5350-5358 (Vol. 94, No. 8, Oct. 15, 2003), which is hereby
incorporated by reference (see also http://oplink.net/~glin-
sky/papers_refereed/i_appl_phys,;  wavelet_id_ 03.pdf).
Spectral decomposition and stratigraphic flattening com-
mander 22 may operate in system 10 as described above for
wavelet extraction commander 22 and amplitude extraction
commander 22

[0220] Massaging and Decorating Commander

[0221] Massaging and decorating commander 22 is
invoked as other commanders 22 discussed above. Massag-
ing and decorating commander 22 may run a tool for
transforming inversion data from seismic inversion software
to industry-standard cornerpoint grid formats suitable for
reservoir modeling and flow simulations. Such a tool may be
the exemplary tool described in the paper “DeliveryMas-
sager: A Tool for Propagating Seismic Inversion Information
Into Reservoir Models,” James Gunning et al., (submitted to
Computers & Geosciences for publication on Feb. 23,
2006), which is hereby incorporated by reference and is
available at http://oplink.net/~glinsky/tech_papers/Deliv-
eryMassager.pdf Massaging and decorating commander 22
may operate in system 10 as described above for wavelet
extraction commander 22 and amplitude extraction com-
mander 22.

[0222] XML Editor Commander

[0223] As discussed above, data (e.g., seismic data) that is
analyzed and used by commanders 22 and self-commanders
24 in system 10 may include XML metadata containing the
variable information. When performing analyses using com-
manders 22 and self-commanders 24, a user may want to
edit this XML metadata to adjust computations or results of
analysis. XML editor commander 22 may run an XML
editor to edit the XML metadata and other XML data. XML
editor commander 22 is invoked as other commanders 22
discussed above. As noted above, XML editor commander
22 may be invoked by a user selection in another active
commander 22, or self-commander 24, GUI. XML editor
commander 22 sends command messages to client-side
services 16 and/or server-side services 18 to retrieve XML
data files, displays the XML data (e.g., in a viewer self-
commander 24), receives and stores user changes, and sends
command messages to client-side services 16 and/or server-
side services 18 to save edited XML data files.

[0224] Component Intercommunication Example

[0225] With reference now to FIG. 7, shown is a flowchart
illustrating exemplary message passing 150 in an embodi-
ment of method and system providing a graphical environ-



US 2007/0276901 Al

ment with intelligent plug-ins as described herein. Client-
side component 16 instance issues a message (block 152).
Message may be a command or data. Component sends a
message using component’s messaging manager 32
instance. Messaging manager 32 places command message
on message dispatcher’s 34 queue (which it knows from
component instance registration when component instance
launched—see above) (block 154). Message dispatcher 34
determines consumer for message (block 156). Ordinarily,
the message dispatcher 34 examines message and deter-
mines consumer component for message from consumer
component CID included in message. Alternatively, mes-
sage dispatcher 34 may determine if there is any special
routing for message (block 158). For example, certain
components may monitor messages from other components.
Further, a user may request that certain messages be broad-
casted. Indeed, message from component may be a com-
mand requesting message dispatcher 34 to forward all
messages from a component or to broadcast all messages
from a component. Moreover, message may be marked for
special routing, as described above. If there is special
routing, message dispatcher 34 routes messages per routing
instructions (e.g., per routing matrix).

[0226] If message consumer is a server-side component
18, including servlet dispatcher 38 (block 160), message
dispatcher 34 passes message to dispatcher connector 36 and
dispatcher connector 36 may serialize message for transmis-
sion to server 14 (block 162). In an embodiment, the
message is not serialized if client 12 and server 14 are
resident on the same computer. In such an embodiment,
workbench application is a stand-alone application and there
is, in affect, only a client 12. Per the above, the message is
passed to the message consumer(s) (block 164). If message
is sent to server-side component 18, servlet dispatcher 38
de-serializes the message on receipt. The message is placed
on consumer’s message queue (block 166). Consumer pro-
cesses message, performing any requested tasks, and gen-
erates a response(s) message (block 168). Note, some com-
mand messages do not require a response message. For
example, a command message may simply request message
dispatcher 34 forward all messages of a certain type or from
a certain component. No response message is needed to this
message. Rather, the “response” would be message dis-
patcher 34 forwarding the requested messages. Response
message is returned to producer (block 170) in a manner
similar to the above (see blocks 154-166). Response mes-
sage includes CID of producer, obtained from original
message by consumer.

[0227] If there is an error exception when processing a
message, consumer provides an abnormal response whose
content provides details about the exception. It is up to the
producer of the message how to handle an abnormal
response (e.g., send message again, display error message,
etc.).
[0228]

[0229] With reference now to FIG. 8, shown is a block
diagram illustrating exemplary hardware components for
implementing system 10 for providing a graphical environ-
ment with intelligent plug-ins. Hardware components
includes client 12 (user machine) connected with a network
such as the Internet 200, providing a network connection to
server(s) 14. Other user machines, such as client 12', may

Exemplary Hardware

Nov. 29, 2007

also be connected via network 200 to server 14. Client 12,
and other clients, may include the same components as client
12.

[0230] Client 12 illustrates typical components of a user
machine. Client 12 typically includes a memory 202, a
secondary storage device 204, a processor 206, an input
device 208, a display device 210, and an output device 212.
Memory 202 may include random access memory (RAM) or
similar types of memory, and it may temporarily store one
or more active client-side components 16, client-side aspects
of message framework 20, a web browser 214, or other
applications, for execution by processor 206. Secondary
storage device 204 may include a hard disk drive, floppy
disk drive, CD-ROM drive, or other types of non-volatile
data storage, and may store client-side components 16 and
data for use by system 10. Processor 206 may execute
applications or programs, including client-side components
16, stored in memory 202 or secondary storage 204, or
received from the Internet or other network 200, and the
processing may be implemented in software, such as soft-
ware modules, for execution. These applications preferably
include instructions executable to perform the methods
described herein.

[0231] Input device 208 may include any device for enter-
ing input or user selections into client 12, such as a key-
board, mouse, cursor-control device, touch-screen, micro-
phone, digital camera, video recorder or camcorder. The
input device 208 may be used to enter information into GUIs
during operations of system 10, as described above. Display
device 210 may include any type of device for presenting
visual information such as, for example, a computer monitor
or flat-screen display. The display device 210 may display
workbench 50, client desktop 60, and the various GUIs
described above. Output device 212 may include any type of
device for presenting a hard copy of information, such as a
printer, and other types of output devices include speakers or
any device for providing information in audio form.
[0232] Web browser 214 is used to install system 10, as
described above. Examples of web browsers include
Netscape Navigator, Microsoft IE, Firefox, Opera, etc. In an
embodiment, web browser 214 includes Java plug-ins. Any
web browser, co-browser, or other application capable of
retrieving content from a network and displaying pages or
screens may be used. Examples of clients 12 for interacting
with system 10 include personal computers, laptop comput-
ers, notebook computers, palm top computers, network
computers, or any processor-controlled device capable of
executing a web browser or other type of application for
interacting with system 10.

[0233] With continuing reference to FIG. 8, server 14
typically includes a memory 222, a secondary storage device
224, a processor 226, an input device 228, a display device
230, and an output device 232. Memory 222 may include
RAM or similar types of memory, and it may store one or
more applications, including server-side components 18,
server-side aspects of message framework 20, server soft-
ware (e.g., Tomcat server), for execution by processor 226.
Secondary storage device 224 may include a hard disk drive,
floppy disk drive, CD-ROM drive, or other types of non-
volatile data storage. Processor 226 executes server-side
components 18 and other application(s), which are stored in
memory 222 or secondary storage 224, or received from the
Internet or other network 200. Input device 228 may include
any device for entering information into server 14, such as



US 2007/0276901 Al

a keyboard, mouse, cursor-control device, touch-screen,
microphone, digital camera, video recorder or camcorder.
Display device 230 may include any type of device for
presenting visual information such as, for example, a com-
puter monitor or flat-screen display. Output device 232 may
include any type of device for presenting a hard copy of
information, such as a printer, and other types of output
devices include speakers or any device for providing infor-
mation in audio form.

[0234] Server 14 may store a database structure in sec-
ondary storage 224, for example, for storing and maintaining
information used by system 10. For example, it may main-
tain a relational or object-oriented database for storing
information such as component saved state information,
registered component information, user preferences, etc.
Secondary storage 224 may also storing data used by system
10, including without limitation, sub-surface data used in
sub-surface data embodiment, point-collected data
described above, etc. Such information and data may be
retrieved by server-side services 40.

[0235] Although only one server 14 is shown, system 10
may use multiple servers 14 as necessary or desired to
support system 10. In an embodiment, client 12 and server
14 may be the same machine. Client 12 and server 14 may
also be connected to other computers via Internet or other
network, such as a cluster for performing cluster jobs. In
addition, although client 12 and server 14 are depicted with
various components, one skilled in the art will appreciate
that these machines and the server can contain additional or
different components. In addition, although aspects of an
implementation consistent with the above are described as
being stored in memory, one skilled in the art will appreciate
that these aspects can also be stored on or read from other
types of computer program products or computer-readable
media, such as secondary storage devices, including hard
disks, floppy disks, or CD-ROM; or other forms of RAM or
ROM. The computer-readable media may include instruc-
tions for controlling client 12 and server 14, to operate in the
manners described herein.

[0236] As mentioned above, the uses of system 10 and
workbench 50 are virtually unlimited. Commanders 22 and
self-commanders 24 may be created for virtually any pur-
pose. Data that may be manipulated and operated on by
system 10 is also virtually unlimited. Because of the unique
architecture of system 10 it is very flexible and highly
efficient. Multidimensional data analysis may be performed
using, e.g., 2D and 3D viewer self-commanders 24 and
commanders 22 that interact with each other, e.g., as
described herein. Workbench 50 provides a portable graphi-
cal working environment that a user can take to any client 12
that can connect to server 14 over the Internet or other
network. Highly intensive computational operations may be
performed, e.g., via cluster jobs on a cluster of servers,
without sacrificing processing efficiency. Components intel-
ligently monitor and save state information. An open mes-
saging framework is utilized that enables any component to
listen and monitor messages, taking intelligent actions based
on monitored messages. Users may quit workbench 50 and
component sessions, restoring from saved states to continue
at a later time. Components may be added to system 10 to
provide increased functionality. Client-heavy nature of
workbench 50 facilitates these features and each use of
system 10.

20

Nov. 29, 2007

[0237] The terms and descriptions used herein are set forth
by way of illustration only and are not meant as limitations.
Those skilled in the art will recognize that many variations
are possible within the spirit and scope of the invention as
defined in the following claims, and their equivalents, in
which all terms are to be understood in their broadest
possible sense unless otherwise indicated.

1. A platform for analysis of point-gathered data com-
prising:

a workbench providing a graphical working environment
for a user to view and perform operations on point-
gathered data and to interact with the platform;

one or more plug-ins that operate on the point-gathered
data, including plug-ins that receive inputs from a user
through workbench and issue commands as messages
and that actively save their state by passing the state as
a message; and

a message framework that receives all messages from
producer plug-ins and passes the messages to an
intended consumer, in which the platform actively
saves the workbench state and plug-in states as mes-
sages passed to the message framework.

2. The platform of claim 1 further comprising one or more
services that execute commands from other plug-ins and
return responses to the commands as messages sent through
the message framework.

3. The platform of claim 2 in which the one or more
services include input/output (I0) services.

4. The platform of claim 2 in which the one or more
services include job services for executing and monitoring
jobs generated by plug-ins.

5. The platform of claim 1 in which the plug-ins include
commanders that provide certain functions and issue mes-
sages that include commands and data and receive messages
that include data.

6. The platform of claim 5 in which the certain functions
include performing computational algorithms on the point-
gathered data.

7. The platform of claim 5 in which new commanders may
be added to the platform to increase the functionality of the
platform.

8. The platform of claim 7 in which the platform is
provided under an open-source license and the new com-
manders are provided under a separate license.

9. The platform of claim 1 in which the plug-ins include
self-commanders that issue messages that include com-
mands and data and receive messages that include data or
commands and data.

10. The platform of claim 9 in which the self-commanders
include viewer self-commanders that display the point-
gathered data.

11. The platform of claim 1 further comprising a client
computer and a server, in which the plug-ins are resident on
and executed on the client computer.

12. The platform of claim 11 in which plug-in and
workbench states are saved on the server.

13. The platform of claim 11 in which the point-gathered
data is saved on the server.

14. The platform of claim 13 in which selected portions of
the point-gathered data are retrieved from the server and
saved on the client computer.

15. The platform of claim 11 further comprising one or
more client-side services on the client and one or more
server-side services on the server and in which the client-



US 2007/0276901 Al

side services and server-side services execute commands
from plug-ins and return responses to the commands.
16. The platform of claim 1 in which the one or more
plug-ins generate and display graphical user interfaces
(GUIs) on the workbench.
17. The platform of claim 1 in which the one or more
plug-ins include core plug-ins that are provided for free with
an installation of the platform and commercial plug-ins that
are separately provided and licensed to the user.
18. The platform of claim 1 in which the messaging
framework comprises a messaging manager that comprises
a message handler and a message queue for each plug-in.
19. The platform of claim 1 in which the point-gathered
data is actively or passively gathered.
20. The platform of claim 1 in which the point-gathered
data includes seismic data.
21. The platform of claim 1 in which the point-gathered
data includes financial data.
22. The platform of claim 1 in which the point-gathered
data includes gaming data.
23. The platform of claim 1 in which the point-gathered
data include military data.
24. The platform of claim 1 in which the point-gathered
data include medical data.
25. The platform of claim 1 in which the plug-ins include
plug-ins that monitor messages received by the message
framework.
26. The platform of claim 1 in which the message
framework broadcasts certain received messages to all plug-
ins.
27. The platform of claim 1 in which the message
framework broadcasts certain received messages to selected
plug-ins.
28. The platform of claim 1 wherein the operations
performed on the data by the plug-ins include analysis of the
data.
29. The platform of claim 1 wherein the operations
performed on the data by the plug-ins include multidimen-
sional analysis of the data.
30. A system for providing a graphical web-based envi-
ronment for performing operations on data comprising:
a client operating on a user machine, including:
a workbench that provides a graphical working envi-
ronment for a user to interact with and operate a
plurality of components;
a plurality of components operating in the workbench,
including:
one or more commanders that analyze and perform
operations on data, in which each commander
includes state-saving, state-restoring and message
passing capabilities, receives inputs from the user
through the workbench, issues commands and
receives responses; and

one or more self-commanders that receive inputs
from the user through the workbench, issue and
receive commands, and issue and receive
responses; and

one or more client-side services that perform ser-
vices on the client per commander or self-com-
mander issued commands and issues responses to
the commands; and

a message framework, in which the components com-
municate with each other using messages passed
through the message framework, in which each

Nov. 29, 2007

message is passed through the message framework
and includes data or data and a command and the
commands and responses issued by components are
sent as messages;

a server in which the server stores information regarding
the components, including the state and identity of
registered components.

31. The system of claim 30 in which the system is
configured to accept and operate with additional, third-party
developed components referred to as commercial compo-
nents.

32. The system of claim 30 in which the server is resident
on a remote machine.

33. The system of claim 30 in which the message frame-
work comprises a message dispatcher resident on the client
and a servlet dispatcher resident on the server, and the
message dispatcher receives and process messages and
passes messages to the servlet dispatcher for execution on
the server.

34. The system of claim 30 in which the server comprises
one or more server-side services that perform services on the
server per issued commands and issues responses to the
commands.

35. The system of claim 30 in which the components
further include system components for managing the system
and the state-saving.

36. The system of claim 35 in which the system compo-
nents include:

a workbench manager that manages the workbench and
provides a workbench GUI for the user to control the
workbench and launch components; and

a state manager that manages the state of the workbench
and components.

37. The system of claim 30 in which the one or more
commanders include an XML editor commander that is used
to edit XML data.

38. The system of claim 30 in which the self-commanders
include one or more viewer self-commanders that display
the data and results of operations on the data performed by
commanders.

37. The system of claim 36 in which the viewer self-
commanders include a two-dimensional (2D) viewer.

38. The system of claim 36 in which the viewer self-
commanders include a three-dimensional (3D) viewer.

39. The system of claim 28 in which the messaging
framework comprises a messaging manager that comprises
a message handler and a message queue for each com-
mander and each self-commander.

40. The system of claim 28 in which the message frame-
work extends to the server and the server comprises ele-
ments of the message framework.

41. A method for providing a graphical web-based envi-
ronment for performing operations on data comprising:

connecting to a server from a client computer;

opening a workbench on the client computer, in which the
workbench provides a graphical working environment
for a user to interact with and operate a plurality of
components;

starting up a message framework, in which the compo-
nents communicate with each other using messages
passed through the message framework, in which each
message is passed through the message framework and
includes data or data and a command;



US 2007/0276901 Al

launching one or more commander components on the
client computer, in which commander components ana-
lyze and perform operations on data, in which each
commander component includes state-saving, state-
restoring and message passing capabilities, receives
inputs from the user through the workbench, issues
commands and receives responses;
launching one or more self-commanders on the client
computer, in which the self-commanders receive inputs
from the user through the workbench, issue and receive
commands, and issue and receive responses; and

saving the state of at least one of the commander com-
ponents on the server.

42. The method of claim 41 further comprising:

receiving a user input through the workbench; and

one of the commander components issuing a command in

response to the user input.

43. The method of claim 41 further comprising launching
one or more client-side services on the client computer, in
which the client-side services perform services on the client
per commander or self-commander issued commands and
issues responses to the commands.

44. The method of claim 41 further comprising launching
one or more server-side services on the client computer, in
which the server-side services perform services on the server
per commander or self-commander issued commands and
issues responses to the commands.

45. The method of claim 41 in which saving the state of
at least one of the commander components on the server
comprises the at least one commander component sending a
message that comprises the at least one commander state
information to the message framework.

46. The method of claim 41 further comprising restoring
the state of the at least one commander component.

47. The method of claim 46 in which restoring the state of
the at least one commander component comprises:

retrieving saved state information from the server; and

restoring the at least one commander to the state indicated
by the saved state information.

48. The method of claim 41 further comprising operating
at least one of the commander components based on user
input.

49. The method of claim 41 in which the self-commanders
include a viewer self-commander that displays the data and
results of the analysis and operations on the data performed
by commander components, the method further comprising
the viewer self-commander displaying data in response to
user input.

50. A computer readable medium comprising instructions
for executing the steps of the method of claim 41.

51. A computer readable medium comprising instructions
for providing a graphical web-based environment for per-
forming operations on data, by:

opening a workbench on the client computer, in which the

workbench provides a graphical working environment
for a user to interact with and operate a plurality of
components;

starting up a message framework, in which the compo-

nents communicate with each other using messages

22

Nov. 29, 2007

passed through the message framework, in which each
message is passed through the message framework and
includes data or data and a command;
launching one or more commander components on the
client computer, in which commander components ana-
lyze and perform operations on data, in which each
commander component includes state-saving, state-
restoring and message passing capabilities, receives
inputs from the user through the workbench, issues
commands and receives responses;
launching one or more self-commanders on the client
computer, in which the self-commanders receive inputs
from the user through the workbench, issue and receive
commands, and issue and receive responses; and

saving the state of at least one of the commander com-
ponents on a server.

52. The computer readable medium of claim 51 further
comprising instructions for:

receiving a user input through the workbench; and

one of the commander components issuing a command in

response to the user input.

53. The computer readable medium of claim 51 further
comprising instructions for launching one or more client-
side services on the client computer, in which the client-side
services perform services on the client per commander or
self-commander issued commands and issues responses to
the commands.

54. The computer readable medium of claim 51 further
comprising instructions for launching one or more server-
side services on the client computer, in which the server-side
services perform services on the server per commander or
self-commander issued commands and issues responses to
the commands.

55. The computer readable medium of claim 51 in which
saving the state of at least one of the commander compo-
nents on the server comprises the at least one commander
component sending a message that comprises the at least one
commander state information to the message framework.

56. The computer readable medium of claim 51 further
comprising instructions for further comprising restoring the
state of the at least one commander component.

57. The computer readable medium of claim 56 in which
restoring the state of the at least one commander component
comprises:

retrieving saved state information from the server; and

relaunching and restoring the at least one commander to

the state indicated by the saved state information.

58. The computer readable medium of claim 51 further
comprising instructions for operating at least one of the
commander components based on user input.

59. The computer readable medium of claim 51 in which
the self-commanders include a viewer self-commander that
displays the data and results of the analysis and operations
on the data performed by commander components, the
method further comprising the viewer self-commander dis-
playing data in response to user input.



	Tiffs to PDF

