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Regimes of the one-dimensional (1-D) transport of suprathermal electrons into a cold background
plasma are delineated. A well ordered temporal progression is found through eras where J-E
heating, hot electron—cold electron collisional heating, and diffusive heat flow dominate the cold
electron energy equation. Scaling relations for how important quantities such as the width and
temperature of the heated layer of cold electrons evolve with time are presented. These scaling
relations are extracted from a simple 1-D model of the transport which can be written in
dimensionless form with one free parameter. The parameter is shown to be the suprathermal electron
velocity divided by the drift velocity of cold electrons which balances the suprathermal current.
Special attention is paid to the assumptions which allow the reduction from the collisional Vlasov
equation, using a Fokker—Planck collision operator, to this simple model. These model equations are
numerically solved and compared to both the scaling relations and a more complete multigroup
electron diffusion transport. Implications of the scaling relations on fast ion generation, magnetic
field generation, and electric field inhibition of electron transport are examined as they apply to laser
heated plasmas. © 1995 American Institute of Physics.

I. INTRODUCTION

The interaction of a laser beam with a plasma can pro-
duce energetic electrons that are well above the background
electron thermal temperature. These suprathermal or hot
electrons can be generated by various mechanisms which
include resonant absorption,l JXB he:ating,z’3 stimulated Ra-
man scattering,* and not-so-resonant absorption.” Once the
suprathermal electrons are made, they transport into the
overdense background plasma. This transport is nonlocal due
to the large mean free path of the hot electrons. In the past,
this has been the subject of much research® 4 because the
performance of ipertial confinement fusion target designs is
dependent on this transport.'>!® Models such as double
diffusion,’ multigroup diffusion,!”” and a -Fokker—Planck
expansion'!™!? have been developed and solved numerically.
These models describe the plasma evolution with increasing
degrees of sophistication as one goes forward in the list.
What this paper adds to this research is not a more complete
model, but a more global understanding of the interplay- be-
tween the physical processes which determine the character
of the suprathermal transport. These are J-E heating (slow-
ing down the hot electrons by an electric field set up to draw
a return current in the resistive cold background), drag heat-
ing (slowing down the hot electrons by direct collisions be-
tween the hot and cold electrons), and thermal heat conduc-
-tion.

) The results of this research can be applied to situations

-where a population of suprathermal electrons penetrates into
a collisional plasma. Another example of such a situation is
the propagation of intense electron beams through the
atmosphere.'®

We start by deriving, in Sec. II, a simple set of two
coupled partial differential equations which describe the one-
dimensional (1-D) penetration of a constant flux of hot elec-
trons into a cold background plasma of large constant den-
sity. Special attention is paid to the approximations that are
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required to derive them. The result is a well-justified model
that is essentially the same as the phenomenological double-
diffusion model in many respects.

Section IIT defines the structure on which we examine
the transport. First, the transport equations are put in dimen-
sionless form. It is found that the solution of these equations
depends on only one free dimensionless parameter (assuming
constant atomic number, Z). This parameter is shown to be
the hot electron velocity divided by the drift velocity of cold
electrons which balances the suprathermal current. We con-
tinue in the analysis of the transport equations and find that
there are five regimes of transport which always occur in the
same temporal order. How important quantities such as the
width and temperature of the heated layer scale with time are
also found for each of these regimes.

The validity of an important assumption in the derivation
of the transport model is examined in Sec. IV. This assump-
tion, that there is only one group of hot electrons, is com-
pared with the multigroup diffusion of hot electrons em-
ployed in the computer code LASNEX.! No significant
differences are found. .

Implications and applications of our model are looked at
in Sec. V. These include fast ion generation, electric field
inhibition of transport, magnetic field generation, and delin-
eation of vastly different plasma and laser parameters (by
orders of magnitude) which have similar transport.

We wish to caution the reader that we have only exam-
ined collisional transport. Other effects such as instabilities
(e.g., two-stream?®?! and ijon acoustic’?), and two-
dimensional (2-D) phenomena (e.g., spatial spreading of the
current, and large self-generated magnetic fields*>?*) may
influence the transport. One must examine the particular situ-
ation to see whether one of these complications should be
included as an anomalous resistivity or another modification
to the transport.
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Il. DERIVATION OF THE TWO GROUP MODEL

We proceed by deriving a “two group” electron model
from the Vlasov equation with a Fokker—Planck collision
operator,

b V'KJFZE'W“% C(fasfp)s 1)

where the subscripts « and 8 will refer to the three particle
species: ions, hot electrons, and cold electrons (i.e., i, h, and
c, respectively). Magnetic fields havé been neglected be-
cause a 1-D symmetry will be assumed. The standard form
of the Coulomb collision operator® is used:
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The distribution functions are normalized in the common
way so that

f Fa(X,V,0)d3v=n,(x,1). 5)

Simplified forms of the distribution functions are used:
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where g () is distribution function in velocity solid angle for
the hot electrons, and both the n, and T, are constants. There
are several assumptions implicit in the assumed form of the
distribution functions that need to be examined in more de-
tail. The first is that n, is a constant. This will be true pro-
vided that (1) the length scales of interest are much larger
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than a cold electron Debye length, L > \p,., so that
quasineutrality is maintained; (2) there is not sufficient time
for the ions to move, t<<L/ (ZTh/mi)” 2. and (3) the hot elec-
tron density is small compared to cold electron density,
n,<$n.. When combined together, the above three conditions
imply

(2) M (3)

constant=n;=n_.+n,~n,
as desired. The second assumption is that the cold electron
distribution function velocity expansion can be truncated as
shown. This will be true as long as the length and time scales
of interest are greater than the cold electron—ion mean free
path and mean collision time. The nonlocal transport of the
hot electron component guarantees this, because the long
mean free path and collision time of the hot electrons deter-
mines the relevant scales. But this leads us to the third as-
sumption that there is only one group of hot electrons with a
fixed temperature. What should be done is to have many
groups of hot electrons which are coupled together as is done
in multigroup diffusion.!” For the sake of simplicity of the
resulting model, we have retained only one group. This will
make it simple to derive scaling relationships. It will have to
verified a posteriori that adding more groups will not change
the result. This will be done in Sec. IV.

Since we are going to be interested in scaling behavior
of the solutions, the assumption is made that the plasma is
Lorentzian,?® or equivalently Z>1. This will modify the
transport coefficients by factors of order 2 for the case of
hydrogen, but will give the correct large Z scaling for the
coefficients.

Parts of the following derivation may be found in some
of the references.”>?*?7 What we wish to focus on are the
assumptions made in obtaining the simple model and the
way in which the two electron groups are coupled. The
reader is referred to these external sources to fill in the gaps
between some of the equations.

First, consider the equation for the cold electrons:

e e e _ of

9t +v. ‘0_;— "m—eE‘ W=C(fc sfi)+c(fc ’fh), (7)

where we have neglected the cold electron self-collision term
since it will not contribute to the moment equations. This is
because particle number, total momentum, and total energy
are conserved in Coulomb collisions.”” Assuming m,<m;,
one can reduce the cold electron ion collision operator to the
following form:

C(feofi)=—fMIr(v), ®
where
m2v
Ti(v)= TnZne A’ ©

and In A is the usual Coulomb logarithm. We now solve for
£ by substituting £ for £, in Eq. (7), and by using the
form of C(f..f;) given in Eq. (8). The result is
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To obtain the momentum equation take the first velocity
moment of Eq. (10). One is left with

p=l 2lyr R 11
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This is just an expression of Ohm’s law including the ther-
moelectric pressure VT, term and the hot electron drag term,
R, . The first is what is responsible for the voltage in a ther-
mocouple wire. The second is the force per unit volume on
the cold electrons due to collisions with the hot electrons.
This can be more easily seen when the integral in Eq. (14) is
evaluated to give

m=—(m)h, Cas)

eT, ch
where
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and J, is the hot electron current. By quasineutrality, we can
set J,=—J. Assuming that 7,>T_, one can neglect the hot
electron drag term since it is smaller than J/o by a factor
(T,/T,)*”. This leaves us with the form of the cold electron
momentum equation which we will use

E_J 51
To 2e

VT,. 17)

The cold electron energy equation is found by taking the

second-order velocity moment of Eq. (10). The result is

3 oo 3T
T =J-E— 45 J+ 04, (18)
where
)
q=J T_Z__vﬂcl) By 19)
and
mv? "
0= [ 55 et s, 20)

' When the integral in Eq. (19) is evaluated using the form of
£V found in Eq. (10) and the result substituted into Eq. (18),
one is left with ‘
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The first term on the right-hand side of Eq. (21) is respon-
sible for standard heat flow via thermal conduction. The sec-
ond is the J-E heating term. As we already discussed
R, <en_ J/o, so we neglect the third term. The drag of the
hot electrons on the cold electrons transfers energy to the
colds through the fourth term. This term can be written,
when the integral for Q,, is evaluated, as

0,=3Tyny! 72 - (23)

The last two terms on the right-hand side of Eq. (21) are
neglected because either J=0 or the sum of J-E and Q,
terms is larger than them. This can be seen most easily by
assuming that the hot electron energy is deposited by the
J-E and Q,, terms on a scale length L. The sum of the last
two terms will be less than or of order J,T /eL, where J is
the initial hot electron current. The two heating terms will be
of order JyT,/eL, which is larger by a factor T},/T, . One can
now write the cold electron energy equation as

> 0Tc—v VT+12+’ 24
7 e 5 =V (kVT)+—+0). (24)

Now we turn our attention to the hot electron equation:

Ifn fn

e _ Ify
ot \ A “g_m"—'E' W=C(fh ’fi)+c(fh ’fc)9 (25)

where we have neglected the hot electron self-collision term

since it will not contribute to the moment equations. To de-
rive the momentum equation we take the first-order velocity
moment of Eq. (25) and obtain

d“h (9nh
m.ny "—I-t*-i'mellh 3—t+V-(nhu,,)
= —Vp-—V~II—enhE+J m C(fy.f:)d>v, (26)
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3 zZ npu, '
mevc(fh 9fi)d V== '2" ) (29)
. Tch

and we neglect the C(f},,f,) term because Z>1.
The energy equation is found by taking the second-order
velocity moment of Eq. (25). The result is
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" and the C(f,.f;) term has been neglected since Zm,/m;<1.
~ To neglect the hot electron inertia term on the left-hand
side of Eq. (26), we assume that we are interested in evolu-

tion of the hot energy equation (or equivalently n,) on a time
scale 7, that is much longer than that on which the velocity

u, evolves, 7, ; that is

1 ( on h

1 1
—+V. (nh“h))‘ Pt (32)

Tu

1 duh
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at

This will be true provided that Z>1 and |u,| < V3T, /m,.
The first condition will be true by assumption; the second we
will have to enforce explicitly by a flux limiter. To see this
ordering of time scales compare Eq. (26) to Eq. (30). First
~ divide Eq. (26) by m,nj,u;, and Eq. (30) by T),n; . Note that
the term involving E in Eq. (30) is smaller than the analo-
gous term in Eq. (26) by the factor |u,|/\/3T),/m,. One can
also see that the term involving C(f}.f,) in Eq. (30) is
smaller than the term involving C(f}.f;) in Eq. (26) by a
factor 1/Z.

We make a further assumption that the pressure is iso-
tropic II=0, and we are now left with the momentum equa-
tion

0=V. (n,,Th)+enhE+zh—uh- (33)

2 Ty

For a 1-D problem Egs. (17), (24), (30), and (33) can be

reduced to

enpuy

E= '0_(—Tc)—,' | (34a)
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ony, Z nym, uy,
0= Th —+enhE+ N (34C)
ox 2 Ty
on, 0 (enul)E  ny .
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where quasineutrality, J=en,u,, has been used and one
must explicitly enforce |u,| < 37T}, /m,. Note that the VT,
term has been neglected in Eq. (34a). If it would have been
retained -and the resulting expression for E substituted into
Egs. (34c) and (34d), the additional term would be smaller
than the others by a factor 7./T), . The logic that allows one
to neglect this term is the same as that which allowed the

VT, terms to be neglected in Eq. (21). The injection of hot

Phys. Plasmas, Vol. 2, No. 7, July 1995

electrons into the problem will be done by the choice of the
appropriate boundary conditions on Egs. (34).

Ill. REGIMES OF TRANSPORT AND SCALING
RELATIONSHIPS

The most convenient way to examine the regimes of
transport and extract how different quantities scale with time,
is to first cast the simple 1-D model developed in the previ-
ous section in dimensionless form. A natural velocity scale
for the penetration of a current J,, of suprathermal electrons
into a cold dense background plasma of density ., is the drift
velocity, ug=Jy/en., required in the cold background
plasma to neutralize the suprathermal current. One can now
define a temperature, To=m u3, and a frequency

1/ 7g=nug(e*Ty)*Z In A. 35)

For the remainder of this section, we normalize the densities
by n_, the temperatures by T, the times by 7, the distances
by uy7y, and the velocities by u,.

The first of the two coupled partial differential equations
which constitute the simple 1-D model is Eq. (34b)

. 9 o 0T\ [24\ _,, X
at &x( © ox * 3 T (nhu)
2B
+— n, Ty ', (362)

here written in dimensionless form. The second is Eq. (34d)
with the substitution of the expression given for E in Eq.

‘(34a)
oy, 9 24\ T, 2B —
9t ox (npup) 3 T, (nhuh) 7 ny

(36b)

By combining Egs. (34a) and (34c) one obtains an expres-

sion for the hot electron fluid velocity,

(3nh/5X)
(BT 324 An, T3y’

npuy = (37

that must be flux limited so that the velocity used in Eqgs.
(36) is less than y3T),. One can do this by setting

uh=min(u;," ,\/3Th) (38a)
or, in a more continuous way, by letting
‘ ufy,
=, (38b)
where v, = +3T,. In these dimensionless equations,

A=m"%4v2, B=4n/3V3, and C=32v2/37"" are constants.

The boundary conditions we use are that there is no heat
flow at x=0 or x=1 and that there is no hot electron flow at
x=1, where [ is some large distance greater than the scale
lengths of interest. The hot electron flow at x=0 that corre-
sponds to a current of J in our normalized units is n,u,=1.

- This leaves us with the following boundary conditions on

Egs. (36):
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dT .(x=0) B T (x=1) _ ony(x=1) B
ax B ox B ox -

0, ' (39a)

and

nhuh(x=0)=l. (39b)

The initial hot electron density and cold electron temperature
are both assumed to be 0. This gives the initial conditions

n,(t=0,x)=T.(t=0,x)=0. (40)

An easy identification of the collisional source of the
terms on the right-hand side of Egs. (36) and (37) can be
made according to their constant coefficients. The J - E heat-
ing, as well as the cold resistivity, come from C(f,,f;) and
are those terms which involve A. The heat conductivity
comes from the same collisional source and is the term with
the C constant multiplier. The direct collisional energy ex-
change from the hot electrons to the cold electrons has its
origin in C(f;.f.). The corresponding drag heating terms
are the two with the 2B/Z multipliers. Finally, the hot elec-
tron resistivity is caused by C(f,, ,f;) and appears in Eq. (37)
as the term with B.

The solutions of Egs. (36) only depend on the param-
eters T}, and Z. In other words, one can write the solutions as
T.(x,t;T}y.,2), ny(x,t;T),,Z), and uy(x,t;T,,Z). Given a
value of T}, and Z all the solutions are just scaled versions of
each other. For practical purposes it is necessary to know the
quantities by which the variables are scaled in physical units.
Assuming that there is an energy deposition into hot elec-
trons of /(W/cm?) and that each hot electron has an energy
T,(keV), one finds that

To(keV)=2%x1013 P(Wiom) v(41 )

olkeV)= n(/cc) T2 (keV)’ 2

i) =6 1015 —LCvlem) 41b)
uo(cm/s) = n(/cc)T(keV)’ (

=4.2X10%? ! I(Wierr') (41c)

7o(ps)=4. Z In A n*(/co)Ti(keV)’ ¢

and
s I*(Wicm?)
uyTe(cm)=2.7X10 (410)

Z In A ny(/cc)Th(keV) '

A straightforward separation of the transport into tempo-
ral regimes or eras can now be done on the basis of what
terms dominate; first, in the equation for T, Eq. (36a); and
second, in the equation for n;, Eq. (36b). Letting the scale
length for the hot electron density be given by
L,~n,/(dn;,/dx) and the scale length for the cold electron
temperature be given by L;~T./(JT,/dx), one obtains the
following relationships:

T, T2 _— 2B,
Y ~0('¥ +0(Tc )+0 7‘nhTh , (42a)
any, 1 T, *"? 2B .,
W~O(l:)_0( T, -0 7nhTh ; (42b)
and
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N

T3

L,~min T T2, n,(3T) V2L, . (42¢)

The boundary condition has also been used in obtaining the

above expressions, by involving the scaling n,u,~O0(1). It
also has been assumed that 2A/3~C~O(1). The first two
scaling relationships are consequences of Egs. (36). The third
is an expression of Eq. (37) using the flux limiter given in
Eq. (38a). The terms on the right-hand side of Eq. (42c)
correspond to hot electron resistivity, cold electron resistiv-
ity, and the flux limit, respectively.

Aiding in the separation of transport into regimes is the
fact that 7;,>1. This can be seen most easily from the state-
ment of quasineutrality n,u;,= —n_.u,, which implies that
Ty~ (nJny)*>1.

During the earliest times and smallest temperatures the -
J-E heating term dominates the temperature equation, the
advective term dominates the density equation, and the flux
is limited in the equation for L, . Therefore, we find that

JT,

7~T;3’2, (43a)

3nh 1

o Ly (43)
n

L,~n,(3Ty)"*L,, (43c¢)

and that, because the cold electron heat flow is not signifi-
cant, L;~L,. The solution to Egs. (43) is T,~t*>,
n,~(3T,) "2, and L,~L;~(3T},)"*t. These scalings will
hold as long as L, is determined by its flux limited value,
that is, r<(37},)**. This temporal regime we call the tran-
sient J-E regime. Here, the hot electrons move unimpaired
by the electric field setup to supply the cold return current.
Meanwhile the cold background is heated by the J - E effect.

For later times the J- E heating term still dominates the
temperature equation, the advective term still dominates the
density equation, but the cold electron resistivity dominates
the expression for L, . This leaves us with

aT,

9l 312

o T, (44a)
0nh 1 44b
ot L, (44b)
L,~T,T.? (44c)

and L;~L,. The scalings which solve these equations are
T ~1*"%, ny~T; ', and L,~L;~T,t*>. This is what we
call the J-E regime, and it covers the time from when the
transient J - E regime ends to the time when the J- E heating
term in the temperature equation becomes of order the drag
heating term, that is, (37,,)>*<t<T3'*(Z/2B). During this
regime, the hot electrons are being slowed down by the elec-
tric field. The reduction of the exponent of ¢ in the expres-
sion for L, is to allow some of the beam to sacrifice itself,
heating the background, lowering the resistivity, and allow-
ing the hot electrons to penetrate further.

As the background is heated, the importance of the J- E
heating decreases. Eventually the next temporal regime is

Michael E. Glinsky



TABLE 1. Regimes of transport. The minimum time for which the regime’s scalings are valid is #,.

Transient J- E J-E Drag—/J-E transition Drag Diffusion
T.~ 125 [l 125 ) 7 \-12 49,219
o]
2
L,~ (BTt TP T, Z \I2 z \12
Ly~ BTV T T3 7 \12 7354719
~ -1 ~1,2/5 n "
n, (3Th) Th t z T1/2 3/5 g T—IIZ g T_l/z
B " 2] r 5] Tn
o~ /4 5/6 9/14
Fmin 0 (T,/3) £ z [z o Z )"
k \2B r \28? n \28?

entered where the drag heating term dominates the tempera-
ture equation, the advective term in the density equation is
balanced by the drag heating term, and the density scale
length is still determined by the cold electron resistivity. One
can now write

oT. 2B :

0; > T, 2, (452)
1 2B

L—~ —Z— nhT,','3l2, (45b)
n

L,~T,T*?, (45¢)

and L,~Ly. One can verify by simple substitution into the
above equation that T, ~t2’5, n,,~(Z/ZB)T”2 "3’5 and
L,~L~T, ¢33, This will be referred to as the J- E drag
transition regime. It will span times from the end of the
previous regirfie to those when the density scale length be-
comes dominated by hot electron collisionality, that is,
T32(Z/2B)<t<T;"*(ZI12B)"'S.

The drag regime is the next regime that is entered. The
only change is the dominance of the hot electron colhsxonal-
ity in the equation for L, , so that

oT, 2B
< —-1/2
w7z T, *'*, (46a)
1 2B _
L~7Z n,T5 "2, (46b)
1 ' ’
Li~% n, T3, (46c)

and L,~L;. The solution of Egs. (46) is

~(232/Z)”2Th t, n~TpV%(Z/2)"?, and L,~Lg
~T2(Z/232)” 2. One leaves this regime when the heat con-
duction term starts to dominate in the temperature equation
so that the regime spans times such that
T33(Z12B%5<t<T}*"(Z/2B*®'*. Note that the width
of the heated layer is a constant given by the geometric mean

of the hot electron—ion mean free path, \,;, and the hot

electron—cold electron mean free path, A, . This is due to hot
electrons randomly changing direction on a scale length de-
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termined by how fast they lose their momentum, ;. The
diffusion continues until they travel a long enough distance
that they lose their energy, A,, .

The final regime comes into play when the temperature
gradient becomes so large that thermal diffusion can carry
the deposited energy deeper into the background plasma. The
heat conduction term dominates in thls the diffusive regime,
so that one can write

T, T
9t ~ —L—lTT y (47a)
1 2B B
-L—N 7’ nhTh 3/2, (47b)
n
and
! 52
L~% n,T; " 47c)

The boundary condition specifies that the heat flow must be
equal to the incident energy ﬁux, T72/L;~O(T}). The well-
known similarity solution?® exists for T,, such that
T~TY, ny~Tj 12(7/2)V2, [ ~TX(Z/2B*)"2, and
Ly~ T,5,’9 (119

An overview of the regimes is given in Table I. The
relationship of these transport regimes to each other can be
seen in Fig. 1. Here for a fixed value of Z=79, gold, the
areas in (¢,T,) space where the different processes dominate
are shown. Note that there is a well-ordered temporal pro-
gression through the regimes for a fixed value of 7). A
sample of how the quantities scale with time for a value of
T,,=1O4 is shown in Fig. 2. Compared to these simple scal-
ings is a numerical solution of Egs. (36) with the continuous
flux limiter given in Eq. (38b). These equations, which re-
duce to two coupled 1-D nonlinear parabolic partial differ-
ential equations, were solved using a predictor—corrector
algorithm.?® There is good agreement in the scaling behavior,
but a factor of 4 discrepancy exists in the L, values for the
J - E regime. The density of hot electrons at the surface, n,,,
and hence the hot electron pressure peaks at the end of the
J-E regime. Its maximum value is
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FIG. 1. Areas in (¢,T;) space where the different transport processes domi-
nate. The location of the transport regimes are shown for Z=79.

) 1/10
| 2] L)'
hmax= h \B*Z/12 )

This is enhanced above the time asymptotic diffusive value
of (Z/2)"*T;;'"* by the inhibition of the transport by the
electric fields. This electric field is also evidenced by range
shortening of L, to a value below its free-streaming value of
min[(37,)"%,(Z/2B*)*T?].

IV. COMPARISON OF THE SIMPLE MODEL TO LASNEX

A severe assumption of the simple model is that there is
only one group of hot electrons. There is no a priori reason
why only one group should be sufficient to capture the char-
acter of the transport. For this reason, a comparison was
made between the multigroup diffusion method!” of hot elec-
tron transport used in LASNEX'® and the numerical solution of
Eqgs. (36). We used a Maxwellian source of hot electrons in
LASNEX with energy T),=100 keV and energy flux 3x10"7
W/cmz, that was injected into the first cell of a 1-D LASNEX
calculation. These electrons were allowed to transport into a
hydrogen plasma of constant density 0.24 g/cc. Hydrody-
namic motion of the plasma, radiation generation, and radia-
tion transport were disabled. Twenty groups were used in the
hot electron transport. The results are shown in Fig. 3. They
are compared to the numerical solution of the simple model
with Z=1 and T,/Ty=10* As one can see, the two models
show good agreement over many decades in time that span
all five transport regimes. The discrepancy in the temperature
at early times is due to the condensed matter’® low tempera-
ture conductivity used in LASNEX.

V. IMPLICATIONS AND APPLICATIONS OF THE
SIMPLE MODEL

A. Fast ion generation

A use of the simple model is to determine the amount of
energy that will be transferred into fast ions at the front sur-
face of a plasma, if the laser ponderomotive force is ne-
glected. There has been much experimental, theoretical, and
modeling work>! done on the transfer of hot electron energy
into the hydrodynamic energy of energetic ions blown off of
the surface of the plasma. This blowoff is caused by the hot
electrons which strike the surface of the plasma and try to
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(© t/ To

FIG. 2. Time dependence of physical quantities for Z=79 and T,=10%
Solid lines are the numerical solution of Egs. (36). Dashed lines are the
simple scalings given in Table L. (a) Temperature at the surface (x=0) where
laser energy is deposited into suprathermal electrons. (b) Depth to which
electrons penetrate L, shown as lines with diamonds. Depth to which heat is
transported by thermal diffusion Ly is shown by the plain lines. Values. for
numerical solution are the depths for which n; and T, reach one-half their
surface values. (c) Density of suprathermal electrons at the surface.

leave. Because the Debye length for the hot electrons is
small compared to the distance that the ions will move dur-
ing their acceleration phase, there is no significant charge
separation and the hot electrons will bounce off the wall
formed by the edge of the ion density. As the hot electrons
bounce off the wall they will transfer momentum to the ions.
Since the simple model gives the density of the hot electrons
at the surface, one can estimate the rate at which energy is
being transferred from the hot electrons to the ions. One
should note that the simple model is only being used to es-
timate the density of hot electrons which enter this blowoff
region at the edge of the plasma. Within this blowoff region
there will be only hot electrons and assumptions of the
simple model such as n,<n_ will be violated, but there is
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FIG. 3. Comparison of 1-D LASNEX multigroup electron diffusion solution
(dashed lines) to numerical solution of Egs. (36) (solid lines). An energy flux
of 3x10'7 W/cm? is put into 100 keV electrons which transport into a
hydrogen plasma of density of 0.24 g/cc. (a) Temperature at x=0. (b)
Depths at which n;, (lines with diamonds) and T, reach one-half their value
at x=0. (c) Density of suprathermal electrons at x=0.

also no transfer of energy from the hot electrons to the cold
electrons in this region. Since we will find that hot electrons
lose most of their energy to the cold electrons, the density of
the hot electrons is being determined by the transport in the
bulk of the plasma where the simple model can be applied.
We now turn our attention to a quantitative estimate of
the energy exchange using the simple model. The rate at
which momentum is being transferred from the hot electrons
to the ions is the flux of hot electrons on the surface times
their momentum '

1 dp,
— ——=(nv,)(m, ).

area dt (48)

The energy exchange rate will be
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TABLE II. Amount of suprathermal electron energy coupled into ion hy-
dromotion (fast ions).

Simple model LASNEX
Hydrogen 4% 4%
Solid gold 12% 11%
Hydrogen on solid gold 18% 18%
1 dE, 1 dp;
- - ~nhThv,~ . (49)

e PO i i
area dt ' area dt

What remains to be found is an expression for the ion ex-

- pansion velocity. This can be done most easily by equating

the energy contained in the ion blowoff layer of thickness d
to the time integral of the energy exchange rate
1 dE;

ny 4
% ot~ [ L

e dt~nhThd.

(50)

Therefore, the ion expansion velocity will be the ion sound
speed using the hot electron temperature

Zme 1/2 Th 172
i m; m_e ’ . ol

When this is compared to the rate at which energy is being
deposited into the hot electrons dE,/dt, one finds that

dEl/dt (nh)(Th) 1/2(Zme) 17z

dE,/dt \n )\T, m;

(52)

The expression for n,/n . from Table I can be substituted into
Eq. (52) to find the time dependence of the energy being put
into the ion blowoff. This energy transfer rate is maximized
at the end of the J- E regime when

dEi /dt VA 1/2 Zme 1/2 Th 1 1/10
dE,ldt] |2 m; T, B*Z/2|
(53)

The second factor is, for most cases, approximately equal to
1/40. The first factor is just how many “effective” times the
hot electron hits the surface before it loses its energy to the
cold electrons, neglecting electric fields. Each time it hits the
surface it loses 1/40 of its energy. This can be enhanced
mildly by electric fields as determined by the third factor.

FIG. 4. Geo;netry of azimuthal magﬁétic field. Laser energy deposited into
hot electrons. Electric field formed to drive return current in cold back-

ground ‘plasma to cancel hot electron current. Curl of this electric field
generates the magnetic field.
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FIG. 5. Azimuthal magnetic field amplitude versus time. The laser spot
diameter is given by L; . Solid lines are the numerical solution of Egs. (36).
Dashed lines are the simple scalings given in Table I. An energy flux of
3%10'7 W/cm? is put into 100 keV electrons which transport into a hydro-
gen plasma of density of 0.24 g/cc. o

The energy put into the ions is therefore significantly en-
hanced in high Z, high density plasmas (n,>n, which im-
plies T;,>T,). '

We have compared the LASNEX estimate of fast ion
blowoff to that of the simple model. For this comparison we
modeled the 1-D transport of a suprathermal electron pulse
(1 ps, 10" W/cm?, 80 keV) into hydrogen (density of 1 g/cc),
solid gold, and 500 A of hydrogen on top of solid gold. The
amount of the suprathermal electron energy transferred into

107 i
1 e
- 1025_
éh.
ﬁm 1023__
10 T s B
10" 10'6 10" 10%°
(a) I (W/icm?)
10° —t—t—t+—+—
4 gm0
-~ 10°+ +4
g
£ Lom
T 4
0.1 pm
Lo __Swm_ __ P
10
10" 10' 10 10%
(b) I (Wiem?)

FIG. 6. Similar plasma conditions. Conditions that have equivalent transport
to the absorption of an intense laser (/=10'° W/cm?, A=0.1 um, Toulse™= 1
ps) into a dense precompressed core n,=10"/cc are shown. Small dashed
lines are the conditions for a 0.1 um laser. Large dashed lines are. the
conditions for a 10 um laser. Solid lines are the conditions for a 1 gm laser.
Large dots are the above unscaled conditions.
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'TABLE IIL Examplev electron transport conditions.

Condition 1 (W/cm?) toutse (PS) n, (/cc) T, (keV)
A 106 750 102 200
B 108 1 102 200
c 10Y ' 0.1 10% 1000
‘D 10 1 10% 100
E 10 - 100 10 10
F 10 750 0% 200

ion hydromotion was calculated. These LASNEX simulations
included local thermodynamic equilibrium (LTE) atomic
physics, hydrodynamics, and multigroup electron transport.
In Table II, the results of the computer simulations are com-
pared to the prediction of the simple model given above. For
the case of the hydrogen on solid gold a Z/A=1 was used in
the second factor of Eq. (52) instead of 79/197, the appro-
priate value for solid gold. This was done because the hydro-
gen ions are being accelerated instead of the gold ions while
the hot electron density is still being determined by the trans-
port in the bulk gold. The electron density used in the simple
model for solid gold was the same as that calculated in the
simulations and was consistent with an ionization state of
Z*=25. An interesting trend should be noted in these data.
Pure hydrogen couples less than 1/4 the energy into fast ions
that solid gold with some surface hydrogen does.

B. Magnetic field generation

Another application of the simple model is to estimate
the time dependence of the magnetic fields that will be gen-
erated by the electric field, E=J/o. These are fields that are
formed behind the laser spot. Their geometry is shown in
Fig. 4. We assume that the problem is still approximately
1-D or that the length scales of interest are less than the laser
spot size, L;. From Maxwell’s equations B~—cVXE.
Therefore, one finds that B~cE/L; since E is directed per-

" pendicular to the laser absorption surface and it diminishes in

the direction parallel to the surface. The electric field can be
rewritten from Eq. (34a) as

E=By(AZ In A)(T,./Ty) "2, (54)

]
1
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FIG. 7. Electron transport conditions given in Table III shown in (¢,T),)
space. Areas where different transport regimes occur for Z=1 are also dis-
played: (a) transient J-E regime, (b) J-E regime, (c) J- E-drag transition
regime, (d) drag regime, and (e) diffusion regime.
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where By=e>n_/T,. In physical units,

3 2
n,(/cc)T(keV)
— _33 C
By(G)=3.2X10 W (55)

Using the cold electron temperature scalings found in Table
I, one finds that B scales as t>° during the first three regimes,
does not increase during the drag regime, and increases again
as 1*® during the diffusive regime. For example, we plot in
Fig. 5 the magnetic field amplitude for the same parameters
that were used to generate the data in Fig. 3. Shown is both
the prediction using the T, given by the scaling relationships
in Table I, and the T, obtained by numerical solution of Eqs.
(36).

C. Similar plasma conditions

One can also use the similarity of the solutions for the
same value of T,/T, and Z, to determine scaled versions of

the same electron transport conditions. For instance, take the |

transport of hot electrons (T,~100 keV) generated by an
intense laser beam (/=10 W/cm?, A=0.1 um, Toutse= 1 PS)
into a dense precompressed core n,=10%/cc. This cannot yet
be done but one might like to see.if there is a scaled version
of this transport that one can do with existing lasers. Assum-
ing that the hot electron temperature characteristic of reso-
nance absorption is proportional to T, (IN%)"/3,! one needs
to find other situations that have the same value of T,,/T and
7/7y. Given the laser intensity I, and wavelength A, one
would like to use, the cold electron density n, and the pulse
length 7, that would give similar transport are

1 1/2 )Y -1
ol 69
and
N\ 2
Ts= 7'pulse( 'X—) (57)

These conditions are displayed graphically in Fig. 6. The
unscaled conditions are shown as large dots on these graphs.
Note that a 10" W/cm?, 1 pm: laser with a pulse length of
100 ps, shot into a solid density target gives the same trans-
port.

It is also instructive to place various lasers and plasma
conditions on a (T},/T,,t/ 7,) plot. The common laser plasma
conditions given in Table III, have been put on such a plot in
Fig. 7. One can easily see the roughly equivalent conditions
and those which lie in vastly different regimes.

D. Predicting E-field transport inhibition

As was discussed at the end of Sec. III, there can be
significant inhibition of the hot electron transport by the elec-
tric field set up to supply the cold return current necessary to
maintain quasineutrality. This happens during both the J-E
and J- E-drag transition regimes. The maximum inhibition
occurs at the border between these two regimes. Some ex-
periments have measured such inhibition.>? The transport of
14 keV hot electrons generated by the absorption of a 1 um,

3Xx10" W/cm? laser was studied by monitoring the Ka

x-ray emission form the back side of a foil target. Gold tar-
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FIG. 8. Region of inhibition of transport by E field. Region of inhibition
(for Z*=30) is located between two solid lines. Shown as the large points
are the transport conditions for 14 keV electrons into solid density gold and
0.5% solid density gold. A 2% absorption of a 3X10'> W/cm?, 100 ps laser
pulse is assumed. The regions of transport are also shown: (a) transient J- E
regime, (b) J-E regime, (c) J- E-drag transition regime, (d) drag regime,
and (e) diffusion regime.

gets of solid density and 0.5% solid density were used. For
this experiment, only the density of the target foil n, was
varied. The hot electron temperature T, the hot electron
current Jy, and the laser pulse length, 7=1 ps, were held
fixed. Assuming an average ionization state, Z*=30, charac-
teristic of a solid density Au plasma at a temperature of a few
hundred volts?® we have plotted the region of inhibited elec-
tron transport in Fig. 8. The location, for this experiment, of .
the two gold foils of different densities are shown relative to
this region. As was measured in the experiment, the solid
gold foil is three decades past the time when the transport
would be inhibited. In contrast, the 0.5% solid density gold
foil sits on the border of the transport inhibition region,
where one can expect the range to be shortened by a factor of
2 to 4 from the formula given at the end of Sec. III. This was
confirmed by the experiment.

VI. CONCLUSIONS

The simple model and scaling relationships for supra-
thermal electron transport developed in this paper provide a
framework against which more complicated models may be
examined. By locating in which regime the transport lies, the
dominant collisional effects and the general behavior of the
complicated solutions can be predicted. Conversely, the re-
sults of parameter studies with the more complicated models
can be organized according to the value of T,/T, and t/7, (as
done in Fig. 7).

Estimates can be made with the simple model of physi-
cal effects which occur in laser heated plasmas, such as fast -
ion and magnetic field generation, that are consequences of
the transport. The scaling relationships, found in Table I, can
be easily applied to make basic arguments like those found in
Sec. V. The product is a straightforward understanding of the
cause of the effect. ,

Finally, one can identify, with the help of this model,
physical situations that are superficially quite different in
their character but demonstrate equivalent suprathermal elec-
tron transport.
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